- •§1. Постановка задачи.....................................................................46
- •§1. Основные понятия..................................................................61.
- •§1. Основные понятия.................................................................81
- •§1 Основные понятия.
- •§ 2 Классификация моделей
- •§ 3 Классификация решаемых экономических задач.
- •Классификация решаемых экономических задач.
- •Глава 2. Линейное программирование
- •§ 1 Общая постановка задачи
- •§ 2 Двойственность в задачах линейного программирования
- •Правила построения двойственной задачи по имеемой прямой задаче:
- •§ 3 Теоремы двойственности.
- •§4 Решение задач линейного программирования геометрическим методом
- •Алгоритм геометрического метода решения задач лп.
- •Рассмотрим задачу.
- •§ 5 Симплексный метод решения задач лп
- •Глава 3. Транспортная задача
- •§ 1 Постановка задачи.
- •§ 2 Алгоритм решения транспортных задач.
- •Метод наименьшего элемента.
- •Метод потенциалов.
- •§ 3 Примеры решения транспортных задач.
- •1.Проверяем задачу на сбалансированность.
- •Составляем математическую модель прямой и двойственной задач.
- •Решаем задачу по методу максимального элемента.
- •Глава 4 . Целочисленное программирование
- •§ 1 Постановка задачи целочисленного программирования.
- •§ 2 Графический метод решения задач целочисленного программирования.
- •Алгоритм графического решения задачи целочисленного программирования.
- •§ 3 Пример решения задачи целочисленного программирования.
- •Контрольные вопросы.
- •Глава 5 . Динамическое программирование
- •§1. Постановка задачи.
- •§2. Принцип оптимальности Беллмана.
- •§3. Задача распределения средств на 1 год
- •§4. Задача распределения средств на два года
- •Глава 6 . Управление производством.
- •§ 1 Управление производством.
- •§ 2 Управление запасами .Складская задача.
- •Глава 7. Теория игр.
- •§1 Основные понятия.
- •§2 Антагонистические игры.
- •Геометрический способ решения антагонистических игр
- •§3 Игры с « природой».
- •Пример №1
- •2. Критерий Гурвица.
- •3. Критерий Сэвиджа (критерий минимаксного риска).
- •4. Критерий Лапласа. N
- •Пример №2
- •Глава 8. Системы массового обслуживания
- •§I. Формулировка задачи и характеристики смо
- •§2 Смо с отказами
- •2.1 Основные понятия
- •2.2 Формулы для расчета установившегося режима
- •§3 Смо с неограниченным ожиданием
- •3.1 Основные понятия
- •3.2 Формулы для расчета установившегося режима
- •§4 Смо с ожиданием и с ограниченной длиной очереди
- •4.1 Основные понятия
- •4.2Формулы для установившегося режима
- •§5 Примеры решения задач.
- •Глава 9 нелинейное програмирование.
- •§1 Основные понятия.
- •§2 Математическая модель задачи.
- •§3 Безусловный экстремум
- •§4 Условный экстремум
- •Глава 10 . Сетевое планирование.
- •§1 Основные понятия метода сетевого планирования
- •Работа, события, путь.
- •Любая работа соединяет только 2 события.
- •§2 Расчет сетевых графиков
- •Содержание практических занятий
- •Рекомендуемая литература:
Глава 7. Теория игр.
§1 Основные понятия.
Теория игр - это математическая теория, исследующая конфликтные ситуации, в которых принятие решений зависит от нескольких участников.
Математическая модель конфликтной ситуации называется игрой. Стороны, участвующие в конфликте - игроки, а исход конфликта - выигрыш (проигрыш). Выигрыш или проигрыш может быть задан количественно.
Игра называется антагонистической или игрой с нулевой суммой, если выигрыш одного из игроков равен проигрышу другого, поэтому для полного «задания» игры достаточно указать величину выигрыша первого игрока.
Стратегией игрока называется совокупность принципов, определяющих выбор его действий при каждом личном ходе в зависимости от сложившейся ситуации.
Для того чтобы найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш, когда второй игрок придерживается своей стратегии. В тоже время второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии.
Такие стратегии называются оптимальными.
При выборе оптимальной стратегии следует полагать, что оба игрока ведут себя разумно с точки зрения своих интересов.
Матрица, элементы которой характеризуют прибыль первого игрока при всех возможных стратегиях (обозначается (αij)), называется платежной матрицей игры.
Величина α = max min aij называется нижней ценой игры.
i j
Величина β = min max aij называется верхней ценой игры.
j i
В некоторых задачах, приводящихся к игровым, имеется неопределенность, вызванная отсутствием информации об условиях, в которых осуществляется действие (погода, покупательский спрос и т.п.). Эти условия зависят не от сознательных действий другого игрока, а от объективной действительности. Такие игры называются играми с природой.
Человек в играх с природой старается действовать осмотрительно, второй игрок (природа и т.п.) действует случайно.
При решении задач, относящихся к теории игр, необходимо правильно классифицировать задачу, потому что методы, применяемые к антагонистическим играм кардинально отличаются от методов решения игр с природой.
§2 Антагонистические игры.
Прежде всего, надо уметь находить верхнюю и нижнюю цены игры, т.к. достаточно много игр решается в чистых стратегиях.
Найти нижнюю и верхнюю цены игры для матрицы
Ai |
Bj |
αi α=max αi |
||
B1 |
B2 |
B3 |
||
A1 |
0.4 |
0.6 |
0.8 |
0.4 |
A2 |
1.1 |
0.7 |
0.9 |
0.7 |
A3 |
0.7 |
0.3 |
0.5 |
0.3 |
βJ β = min βJ |
1.1 |
0.7 |
0.9 |
|
Для этой матрицы видно, что α = β = 0,7 = (А2, В2).
Общее значение нижней и верхней цены игры α = β = ν называется чистой ценой игру. Седловой точке соответствует пара минимаксных стратегий, эти стратегии называются оптимальными, а их совокупность - решением игры.
Если седловой точки нет, то можно применить графический способ или составить модель и решить симплекс-методом.