
- •1. Возникновение логики и основные этапы в ее становлении. Определение предмета формальной логики. Связь логики с наукой, образованием, техникой.
- •2. Понятие о логической форме. Понятие, суждение, умозаключение как важнейшие формы логического мышления.
- •3. Понятие и его связь со словом, именем, классом. Объем и содержание понятия и закономерность, выражающая их соотношение.
- •4. Виды понятий, определения каждого из видов, примеры.
- •5. Совместимость и несовместимость понятий. Сравнение понятий по объёму с помощью круговых схем Эйлера.
- •6. Деление понятий: дихотомическое и по видообразующему признаку. Правила деления. Ошибки деления.
- •Правила деления
- •7. Понятие класса в логике, класс и множество. Универсальный класс, класс, дополнение. Понятие необходимого и достаточного условия.
- •8. Триадическая схема образования и анализа понятия в системе: универсум, класс, дополнение. Образование понятия в триадической схеме (пример).
- •9. Операции над классами. Объединение (сложение), пересечение (умножение), разность (вычитание), дополнение (отрицание) классов. Представление в соответствующих формулах и схемах.
- •10. Законы логики классов: определения, формулы.
- •Законы сложения и умножения
- •Законы дополнения
- •11. Определение (дефиниция) понятий. Виды и правила определения. Ошибки в определениях. Алгоритм определения понятия.
- •Виды определения
- •Правила определения
- •12. Логика высказываний. Определение логических символов и логической формулы. Понятие правильно построенной, тожественно-истинной, тождественно-ложной, выполнимой формул и их связь с законами логики.
- •13. Суждение как форма логического мышления. Суждения и предложения. Логическая структура суждений. Суждения атрибутивные, отношения, экзистенциальные (существования).
- •Деление суждений по характеру предиката
- •14. Классификация суждений по качеству и количеству. Логические формы общеутвердительных, общеотрицательных, частноутвердительных, частноотрицательных суждений и их символическая запись.
- •Объединенная классификация суждений по качеству и количеству
- •Символическое выражение категорических суждений
- •15. Распределенность терминов в суждении. Представление свойства распределенности терминов в круговых схемах и таблице. Выделяющие и исключающие суждения.
- •16. Сложные суждения и логические союзы. Конъюнкция, условия истинности и правила вывода, свойственные конъюнкции.
- •17. Дизъюнкция, условия истинности и правила вывода, свойственные дизъюнкции.
- •18. Материальная импликация, условия истинности и правила вывода, свойственные материальной импликации. Материальная импликация и каузальность.
- •19. Эквиваленция, условия истинности и правила вывода, свойственные эквиваленции.
- •20. Отрицание и двойное отрицание, условия истинности и правила вывода, свойственные отрицанию и двойному отрицанию. Понятие о правилах вывода в логике высказываний.
- •21. Законы логики, определения, символическая запись, примеры применения.
- •22. Сравнение суждений. Логический квадрат как инструмент сравнения суждений.
- •Отношение противоречия (а – о; е - I)
- •Отношение противоположности (а – е)
- •Отношение подпротивности (I - o)
- •Отношение подчинения
- •23. Понятие логического следования. Умозаключение, классификация видов дедуктивных умозаключений.
- •Виды умозоключений
- •24. Отношения в логике. Умозаключения из суждений с отношениями рефлексивности, симметричности, транзитивности: определения, символическая запись.
- •25. Умозаключения по логическому квадрату. Запись умозаключений на основе логического квадрата в виде формул. Примеры.
- •26. Непосредственное умозаключение. Умозаключения превращения, символическая запись, примеры.
- •27. Умозаключения обращения (с ограничением и без ограничения), символическая запись, примеры.
- •28. Умозаключения противопоставления предикату (контрапозиции), символическая запись, примеры.
- •29. Простой категорический силлогизм. Логическая структура: понятие о терминах, посылках, фигурах, модусах. Аксиома силлогизма. Правила силлогизма.
- •Аксиома силлогизма
- •Общие правила простого категорического силлогизма
- •Правила терминов
- •Правила посылок
- •30. Первая и вторая фигуры простого категорического силлогизма и их модусы. Правила первой и второй фигур.
- •Выражение силлогистики средствами логики предикатов
- •31. Третья и четвертая фигуры простого категорического силлогизма и их модусы. Правила третьей и четвертой фигур.
- •Выражение силлогистики средствами логики предикатов
- •32. Силлогизмы, образованные на основе простого категорического силлогизма. Энтимемы и энтимематические изречения.
- •33. Полисиллогизмы и сориты, правила образования, примеры. Понятие эпихейремы.
- •34. Умозаключения из сложных суждений, их виды. Чисто условный силлогизм, символическая запись модусов, примеры.
- •35. Условно категорические силлогизмы, символическая запись правильных и незаключающих модусов, примеры.
- •36. Категорические разделительные силлогизмы, символическая запись правильных и незаключающих модусов, примеры.
- •37. Условно-разделительные (лемматические) умозаключения. Дилеммы, их виды, символическая запись и примеры. Понятие о полилеммах.
- •38. Индукция в логике и ее виды. Пять методов установления причинно-следственных связей. Логические схемы, примеры.
- •Методы установления причинной связи
- •39. Логическая теория аргументации. Структура аргументации. Прямое доказательство, схема проведения, пример.
- •40. Косвенные доказательства (апагогическое, разделительное). Схемы проведения, примеры.
- •41. Опровержение. Прямое опровержение, схема проведения, пример. Косвенное опровержение, схема проведения, пример.
- •42. Ошибки в доказательстве и в опровержении. Классификация ошибок, примеры. Правила тезиса
- •Правила аргументов
22. Сравнение суждений. Логический квадрат как инструмент сравнения суждений.
Между
суждениями, имеющими один и тот же
субъект и предикат имеют место следующие
отношения: отношение противоречия или
контрадикторности; отношение
противоположности или контрарности;
отношение подпротивности; отношение
подчинения.
Эти отношения принято изображать в виде схемы – так называемого «логического квадрата».
Буквы А, Е, I, О, помещенные в углах квадрата, обозначают виды суждений, а стороны и диагонали – возможные отношения между суждениями.
Отношение противоречия (а – о; е - I)
Отношение противоречия между суждениями с одинаковыми субъектами и предикатами характеризуются тем, что находящиеся в этом отношении суждения не могут быть одновременно ни истинными, ни ложными. Если одно из противоречащих суждений истинно, то другое непременно ложно и наоборот, если одно из них ложно, то другое истинно. Примером противоречащих высказываний являются следующие: А – «Все люди смертны» и О – «Некоторые люди не являются смертными»; Е – «Ни один пацифист не хочет войны» и I – «Некоторые пацифисты хотят войны». Символически отношение противоречия записываются так:
:
Если верно, что все S суть P, то неверно, что некоторые S не суть P.
:
Если не верно, что все S суть P, то верно, что некоторые S не суть P.
:
Если верно, что некоторые S не суть P, то неверно, что все S суть P.
:
Если неверно, что хотя бы некоторые S не суть P, то верно, что все S суть P.
:
Если верно, что ни одно S не суть P, то неверно, что некоторые S суть P.
:
Если неверно, что ни одно S не суть P, то верно, что некоторые S суть P.
:
Если верно, что некоторые S суть P, то неверно, что ни одно S не суть P.
:
Если неверно, что хотя бы некоторые S суть P, то верно, что ни одно S не суть P.
Отношение противоположности (а – е)
Отношение противоположности характеризуется тем, что находящиеся в этом отношении суждения не могут быть одновременно истинными, но могут быть одновременно ложными. Отсюда следует, что если одно из противоположных суждений истинно, то другое ложно, но не наоборот. Если одно из них ложно, то другое неопределенно.
Примеры противоположных суждений:
А – «Все рыбы дышат жабрами»,
Е – «Ни одна рыба не дышит жабрами».
Символически отношение противоположности записывается так:
:
Если верно, что все S суть P, то неверно, что ни одно S не суть P.
:
Если верно, что ни одно S не суть P, то неверно, что все S суть P.
Отношение подпротивности (I - o)
Отношение подпротивности состоит в том, что суждения, находящиеся в этом отношении, не могут быть одновременно ложными, но могут быть одновременно истинными. Отсюда следует, что если одно из них ложно, то другое истинно. Если же одно истинно, то другое неопределенно. Например:
О – «Некоторые люди бывали на Марсе» - ложно,
I – «Некоторые люди не бывали на Марсе» - истинно.
Символически это отношение записывается так:
:
Если неверно, что некоторые S суть Р, то верно, что некоторые S не суть P.
:
Если неверно, что некоторые S не суть P, то верно, что некоторые S суть P.