
- •12. Регуляция экспрессии генов у прокариот
- •22. Значение эндомитоза и политении.
- •23. Амитоз. Виды амитоза и его значение.
- •24. Гаметогенез. Виды гаметогенеза.
- •25. Особенности образования половых клеток: - сперматогенез и овогенез.
- •26. Энергетический обмен у аэробных и анаэробных организмов. Общая характеристика клеточного дыхания: этапы энергетического обмена.
- •27. Химические св-ва атф, как универсального источника энергии в клетках живых организмов.
- •28. Основные понятия генетики.
- •29. Генный уровень организации наследственного материала. Ген.
- •30. Взаимодействие аллельных генов.
- •31. Взаимодействие неаллельных генов.
- •32. Ген как единица изменчивости.
- •33. Хромосомный уровень организации наследственного материала.
- •34. Хромосомные мутации.
- •35. Геномные мутации
- •36. Генетика пола. Сцепленное с полом наследование. Х-сцепленный и голандрический типы наследования.
- •Голандрический тип наследования. Сцепленный с хромосомой y тип наследования.
29. Генный уровень организации наследственного материала. Ген.
Различают следующие уровни структурно-функциональной организации наследственного материала: генный, хромосомный и геномный.
Элементарной структурой ГЕННОГО уровня организации служит ген. На этом уровне изучается структура молекулы ДНК, биосинтез белка и др. Благодаря относительной независимости генов возможно дискретное (раздельное) и независимое наследование (III закон Менделя) и изменение (мутации) отдельных признаков.
1. Ген хранит и передает информацию.
2. Ген способен к изменению генетической информации (мутации).
3. Ген способен к репарации и ее передаче от поколения к поколению (процесс восстановления природной структуры ДНК, поврежденной при нормальном биосинтезе ДНК в клетке химическими или физическими агентами).
4. Ген способен к реализации - синтезу белка, кодируемого геном при участии двух матричных процессов: транскрипции и трансляции.
5. Генетический материал обладает устойчивостью. Устойчивость генетического материала обеспечивается: - диплоидным набором хромосом; - двойной спиралью ДНК; - вырожденностью генетического кода; - повтором некоторых генов; - репарацией нарушенной структуры ДНК.
Дискретность гена заключается в наличии субъединиц. Элементарная единица изменчивости, единица мутации названа МУТОНОМ, а единица рекомбинации - РЕКОНОМ. Минимальные размеры мутона и рекона равны 1 паре нуклеотидов и называются с а й т. Таким образом САЙТ - это структурная единица гена.
Согласно современным, уточненным представлениям, ГЕН - это участок молекулы геномной нуклеиновой кислоты, характеризуемый специфичной для него последовательностью нуклеотидов, представляющий единицу функции, отличной от функции других генов и способный изменяться путем мутирования. Гены неоднородны. Их делят на структурные и функциональные.
Основными первичными функциями генов являются хранение и передача генетической информации. Передача генетической информации происходит при редупликации ДНК (при размножении клеток) и от ДНК через и-РНК к белку (при обычном функционировании клеток).
Система записи генетической информации в молекулах нуклеиновых кислот в виде определенной последовательности нуклеотидов называется ГЕНЕТИЧЕСКИМ КОДОМ. Явление соответствия порядка нуклеотидов в молекуле ДНК порядку аминокислот в молекуле белка называется КОЛИНЕАРНОСТЬЮ.
30. Взаимодействие аллельных генов.
Взаимодействие между аллельными генами рассматривается как различные типы доминирования. Исследования проводятся при моногибридном скрещивании. Типы доминирования:
-
Полное
-
Неполное
-
Кодоминирование
-
Сверхдоминирование
-
Межаллельная комплементация Изучение фенотипического расщепления при действии различных типов доминирования проводится в соответствии с методикой гибридологического анализа по общепринятым схемам скрещивания, разработанным ещё Г.Менделем. Полное доминирование заключается в том, что в гетерозиготе, полученной при скрещивании представителей чистых линий, различающихся по одной пара альтернативных признаков, один из двух аллелей не проявляет своего действия. При скрещивании гетерозигот между собой (или при самоопылении) в потомстве появляется два фенотипических класса особей в соотношении 3:1. В фенотипе 3 частей проявился доминантный признак, а у 1 части – рецессивный. Неполное доминирование. При неполном доминировании гибриды первого поколения имеют фенотип, укладывающийся в рамки проявления признака между исходными родителями и никогда их не достигающий (т.е. признак может быть любым, но не как у представителей чистых линий: меньше максимального, но больше минимального). При скрещивании таких гибридов между собой во втором поколении наблюдается расщепление по фенотипу на три класса в соотношении 1:2:1. В фенотипе 1 части проявился признак одного из родителей (представителя чистой линии «А»), в фенотипе 2 частей проявился признак гибридов первого поколения, в фенотипе ещё 1 части проявился признак другого родителя (представителя чистой линии «а»). Кодоминирование. При кодоминантном типе наследования гибриды первого поколения в полной мере несут в своём фенотипе сочетание признаков обоих родителей без каких-либо изменений. Во втором поколении наблюдается расщепление по фенотипу в соотношении 1:2:1 (как и при неполном доминировании). В фенотипе у 1 части особей проявляется признак как у одного из родителей (представителя одной чистой линии), в фенотипе 2 частей проявляются признаки обоих родителей (как и у гибридов первого поколения, сочетающих в себе признаки сразу двух чистых линий), в фенотипе ещё 1 части проявляется признак как у второго из родителей (представителя другой чистой линии). Сверхдоминирование. При сверхдоминировании у гибридов первого поколения признак в фенотипе выражен ярче, чем у любого из родителей. Во втором поколении вновь появляется расщепление в соотношении 1:2:1. В фенотипе у 1 части особей проявляется признак одного из родителей, в фенотипе 2 частей проявляется признак как у гибридов первого поколения, в фенотипе ещё 1 части проявляется признак как у второго из родителей.
Межаллельная комплементация – это редкий вид взаимодействия аллельных генов, при котором у организма, гетерозиготного по двум мутантным аллелям гена М(М1М11), возможно формирование нормального признака М. Например, ген М отвечает за синтез белка, имеющего четвертичную структуру и состоящего из нескольких одинаковых полипептидных цепей. Мутантный аллель Ml вызывает синтез измененного пептида Ml, а мутантный аллель М11 определяет синтез другой, но тоже ненормальной полипептидной цепи. Взаимодействие таких измененных пептидов и компенсация измененные участков при формировании четвертичной структуры в редки: случаях может привести к появлению белка с нормальными свойствами.