Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biohimia_Lektsii.doc
Скачиваний:
83
Добавлен:
06.12.2018
Размер:
396.8 Кб
Скачать

^^ °' : . ' ТЕМА 1

БИОХИМИЯ МЫШЦ И МЫШЕЧНОГО СОКРАЩЕНИЯ

Цель занятия: Изучить химический состав скелетных мышц, выяснить химизм мышечного сокращения и расслабления. Усвоить роль химических составных частей и структурных элементов в обменных процессах, обеспечивающих мышечную работу.

Специфической функцией мышц является обеспечение двигательной функции - сокращения и расслабления. В связи с выполнением этой важной функции строение мышечной клетки и ее химический состав имеет ряд специфических особенностей.

70-80% массы мышц составляет вода, 20-26% сухой остаток. Характерным для мышц является высокое содержание белка 16,5-20,9%. Это обусловлено тем, что кроме белков, присущим и другим клеткам, в мышцах имеются специфические сократительные белки, составляющие 45% всех белков мышечной клетки. Остальную массу белков составляют белки саркоплазмы (около 30%) и белки стромы (15% от общего количества). Скелетная мышца состоит из пучков волокон, заключенных в общую соединительную оболочку-сарколемму. Внутри каждого волокна находится около сотни или более миофибрилл, длинных специализированных органелл мышечной клетки, осуществляющих функции сокращения. Каждая миофибрилла состоит из нескольких параллельных нитей, так называемых филаментов двух типов- толстых и тонких, которые располагаются в ней гексагонально; каждый толстый филамент окружен шестью тонкими. Структурная связь между филаментами осуществляется только регулярно расположенными «поперечными мостиками». При сокращении и расслаблении филаменты тонкие скользят вдоль толстых и не изменяют своей длины. При этом связи между филаментами двух типов разрушаются и возникают вновь. Толстые нити главным образом состоят из белка миозина, а тонкие- из актина. Сократительный белок миозин характеризуется высокой молекулярной массой (более 440000).

Особенностью миозина является то, что он имеет участки, обладающие ферментативной активностью (АТФ-азная активность), проявляющаяся в присутствии Са2+. Под влиянием миозина АТФ расщепляется на АДФ и неорганический фосфат (Н3РО4). Выделяющаяся энергия используется для мышечного сокращения.

Актин - сократительный белок, с более низкой молекулярной массой (около 420000). Он может существовать в двух формах: глобулярной (G-актин) и фибриллярной (F-актин). F-актин- полимер G-актина. F- актин активирует АТФазу миозина, что создает движущую силу, вызывающую скольжение тонких и толстых нитей друг относительно друга. Кроме этих двух основных белков сократительная система содержит регуляторные

белки, локализованные в тонких (актиновых нитях) -тропомиозин В и тропонин, состоящий из трех субъединиц: J, С и Т.

Тропомиозин В имеет нитчатую спирализованную структуру и расположен в бороздке спиральной цепи F-актина. Тропонин связан с тропомиозином В и может образовывать комплексы с актином и миозином.

Комплекс тропомиозин ' В-тропони.н называют расслабляющим белком, так как он связан с прцессом расслабления сократившейся фибриллы. Из тонких нитей выделены еще 2 белка: и -актин, являющийся, видимо, белками, укрепляющими сложную структуру тонких нитей. Ориенти ровочно в миофибрилле содержится миозина, актина, тропомиозина и тропонина по отношению к общему белку 55, 25, 15 и 5 % соответственно. Следует отметить еще два мышечных белка: миостромин и миоглобин. Миостромины составляют основу мышечной стромы, это труднорастворимые белки, не извлекаемые из мышцы солевыми растворами. Мышечная строма обладает эластичностью, что имеет существенное значение для расслабления мышцы после ее сокращения. Миоглобин -белок, содержащий железо и близкий по строению и функциям к белку эритроцитов - гемоглобину. Он обладает значительно большим сродством к кислороду, чем гемоглобин и, накапливая приносимый кровью кислород, является запасным резервуаром кислорода в мышце.

Из небелковых веществ следует отметить кроме АТФ прежде всего крёатинфосфат (КФ) и гликоген. КФ - первый мощный резерв ресинтеза (восстановления) АТФ, затрачиваемый на мышечные сокращения. Гликоген

- основной запасной углеводный источник энергии мышцы. Мышца содержит ряд промежуточных продуктов обмена углеводов пировиноградная, молочная кислоты и др.) и большое количество минеральных ионов. Наиболее высоко содержание в мышце К+ и PCV", несколько меньше Na+, Mg++, Са++, СГ, Fe3+, S04".

Внутри мышечного волокна, под сарколеммой, находится саркоплазма

- жидкий белковый раствор, окружающий сократительные элементы мышечного волокна - миофибриллы, а также другие структурные компоненты - органоиды, выполняющие определенную функцию. Это прежде всего - саркоплазматический ретикулум и Т-система, имеющие прямое отношение к мышечному сокращению. Саркоплазматический ретикулум непосредственно связан с сокращением и расслаблением мышцы. регулируя освобождение из своих элементов и обратный транспорт Са2"" в мышечном волокне. По Т-системе передается изменение электрического потенциала поверхностной мембраны элементам ретикулума, что приводит в них к освобождению ионов Са, поступающих к фибриллам и запускающих процесс мышечного сокращения. Митохондрии - содержат ферменты окислительных процессов, осуществляющие образование основного источника энергии мышечного сокращения - АТФ.

В основе мышечного сокращения лежит продольное перемещение миозиновых и актиновых филаментов друг относительно друга без изменения длины самих филаментов. Связь между филаментами

осуществляется с помощью «поперечных мостиков» - головок миозина, выступающих с поверхности миозинового филамента и способных взаимодействовать с актином. Стимулом для включения сложного механизма мышечного сокращения служит нервный импульс, передаваемый на мышечную клетку двигательным нервом, быстро распространяющийся через сарколемму и вызывающий на "окончании двигательного нерва (синапса) освобождение ацетилхолина - химического посредника (медиатора) в передаче нервного возбуждения. Выделение ацетилхолина на поверхность мембраны клетки создает разность потенциалов между ее наружной и внутренней поверхностью, связанную с изменением ее проницаемости для ионов Na+ и К+. В момент деполяризации сарколеммы деполяризуется и Т-система мышечной клетки. Так как Т-система контактирует со всеми фибриллами волокна, электрический импульс распространяется одновременно на все его саркомеры. Изменения в Т-системе сразу же передаются тесно прилегающим к ней мембранам ретикулума, вызывая увеличение их проницаемости, следствием чего является выход кальция в саркоплазму и миофибриллы, Сокращение происходит при увеличении концентрации Са2+ в пространстве между филаментами актина и миозина до 1(Г5М.

Ионы Са2+ присоединяются к тропонину С (кальмодулину), что влечет за собой изменение конформации всего комплекса, тропомиозин отклоняется от головки миозина примерно на 20°, открывая активные центры актина, способные соединиться с миозином (заряженным энерг ией АТФ и находящимся в комплексе с АДФ и Фн в присутствии Mg++), образуя комплекс актомиозин.

Изменяется конформация глобулярной части молекулы миозина (головки), которая отклоняется на определенный угол, примерно на 45° от направления оси миозинового филамента и перемещает за собой тонкий актиновый филамент: происходит сокращение. Конформационное изменение миозина приводит к гидролизу АТФ под действием его АТФазы. АДФ и фосфатная группа выделяются в среду. Их место занимает другая молекула АТФ. В результате восстанавливается исходное состояние и рабочий цикл может повторяться. Частота рабочего цикла и его продолжительность определяется концентрацией Са~т и наличием АТФ.

После прекращения действия двигательного импульса происходит обратный транспорт ионов Са2+ в' саркоплазматический ретикулум, концентрация его между филаментами актина и.миозина падает ниже 10'7 М, и мышечные волокна теряют способность образовывать актомиозин, укорачиваться и развивать тянущее напряжение в присутствии АТФ.

Происходит расслабление мышцы. Обратный транспорт Са осуществляется за счет энергии, получаемой при расщеплении АТФ ферментом Са2+ - АТФазой. На перенос каждого иона Са2+ затрачивается 2 молекулы АТФ. Таким образом, энергия для сокращения и расслабления обеспечивается поступлением АТФ. Следовательно, между сокращениями постоянно должны возобновляться запасы АТФ. Мышцы обладают весьма

мощными и совершенными механизмами восполнения (ресинтеза) расходуемой АТФ и поддержания ее концентрации на необходимом, оптимальном уровне для обеспечения различной по длительности и мощности работы.

Этой цели, наряду с высоким исходным АТФ, служит высокая активность дыхательных ферментов и способность мышцы в сравнительно короткое время (1-3 мин) увеличить уровень окислительного процесса во много раз. Увеличение кровоснабжения мышц при работе способствует увеличению притока кислорода и питательных веществ.

В начальный период может быть использован кислород, связанный с миоглобином. Возможность ресинтеза АТФ обеспечивается и внутренними механизмами клетки - высоким уровнем креатинфосфата, также высокой концентрацией гликогена и активностью ферментов гликолиза.

Вопросы к занятию

  1. Морфологическая организация скелетной мышцы.

  1. Роль внутриклеточных структур в жизнедеятельности мышечной клетки.

  1. Структурная организация и молекулярное строение миофибрилл.

  2. Химический состав мышцы.

  3. Роль АТФ в сокращении и расслаблении мышечного волокна.

  1. Механизм мышечного сокращения. Последовательность химических реакций в мышце при ее сокращении.

7. Расслабление мышцы.

Тема 2 биоэнергетические процессы при • мышечной деятельности

Цель занятия: Изучить особенности процессов ресинтеза АТФ в энергетическом обеспечении различных мышечных упражнений и факторы, определяющие скорость их развертывания, максимальную мощность, метаболическую емкость и эффективность.

В двухфазной мышечной деятельности, т.е. при чередовании актов сокращения и расслабления, происходит несколько процессов, для протекания которых необходимо расщепление АТФ. Гидролиз АТФ происходит по уравнению:

АТФ-аза-

АТФ + Н20 > АДФ + Н3Р04 + Ю ккал

Наличие широкого круга процессов, потребляющих энергию при мышечной работе, обуславливает высокую скорость ее расходования. Запасы АТФ в мышечном волокне составляют 0,4 - 0,5 % от веса мышцы, их хватает на 0,5 - 1 сек. работы с субмаксимальной интенсивностью.

Мышечные волокна нормально работают только при содержании АТФ, колеблющемся в небольшом диапазоне. Накопление больших количсеств АТФ, чем 0,5 % (от веса мышцы) в мышце не происходит, так как возникает субстратное угнетение миозиновой АТФ-азы, препятствующее образованию связей между нитями актина и миозина, ведущее к утрачиванию сократительной способности мышцы. При концентрации АТФ 0,15-0,2 % от веса мышцы наблюдается затруднение в работе «кальциевого насоса», и становится невозможным разрыв между актином и миозином. Все вышесказанное предъявляет высокие требования к процессам, обеспечивающим восполнение (ресинтез) запасов АТФ. •

При повышении работоспособности под влиянием физической тренировки происходит не только увеличение скорости расщепления АТФ при работе, но и совершенствование процессов, в которых АТФ ресинтезируется.

, Ресинтез АТФ при мышечной работе можно выразить суммарным уравнением:

АДФ + Н3Р04 + энергия >АТФ + Н20

Фосфорилирование АДФ неорганическим фосфатом в

физиологических условиях требует затрат энергии в количестве около 10 ккал/моль. Нужное количество энергии освобождается в процессах двух типов: аэробных, происходящих с участием кислорода, и анаэробных, осуществляющих ресинтез АТФ без участия кислорода. ' Прежде чем переходить к характеристике различных путей ресинтеза АТФ, следует остановиться на показателях, позволяющих сравнивать, оценивать их

достоинства и недостатки. К таким показателям относятся максимальная мощность процесса, скорость его развертывания, метаболическая емкость и эффективность.

Под максимальной мощностью понимается наибольшая скорость освобождения энергии, используемой для ресинтеза АТФ, в том или ином процессе (наибольшее количество АТФ, ресинтезируемое в единицу времени).

Скорость развертывания оценивается временем от начала работы до момента достижения процессом максимальной мощности.

Метаболическая емкость - общее количество энергии, которое может быть освобождено в процессе распада вещества до исчерпания возможносте й его мобилизации (общее количество ресинтезируемой АТФ).

Эффективность процесса - характеризуется отношением количества энергии, затраченной на выполнение механической работы, к общему количеству освободившейся энергии. Различают термодинамическую, метаболическую и механическую эффективность.

Термодинамическая эффективность - оценивается той долей энергии АТФ, которая преобразуется в механическую работу. В механическую работу преобразуется 40-49 % (0,4%) энергии, освобождающейся при расщеплении АТФ.

' Метаболическая эффективность показывает, какая часть освободившейся в ходе химических превращений энергии фиксируется в макроэргических фосфатных связях АТФ. В частности, для аэробного окисления углеводов максимальная метаболическая эффективность составляет около 60%.

Механическая эффективность - количественно характеризует способность организма использовать энергию химических связей различных энергетических источников для обеспечения мышечной работы. Она рассчитывается как произведение термодинамической эффективности и метаболической. -

Аэробный процесс - основной механизм ресинтеза АТФ, практически полностью обеспечивающий в обычных условиях энергетические потребности организма. Он характеризуется высокой эффективностью, большой метаболической емкостью, широким кругом субстратов окисления (субстратами аэробного окисления могут быть углеводы, липиды, продукты белкового обмена), отсутствием накопления в организме токсических продуктов обмена.'Однако, многостадийность этого процесса, сложный путь транспорта кислорода к работающим органам и ограниченные возможности систем, обеспечивающих этот транспорт, ограничивают аэробный процесс по максимальной мощности. Наряду с этим, аэробный процесс имеет низкую скорость развертывания. У нетренированных лиц процесс аэробного ресинтеза АТФ достигает своей максимальной мощности только через 3-4 минуты после начала напряженной мышечной работы. Наибольшая скорость ресинтеза АТФ в аэробном процессе у лиц с высокой степенью тренированно сти, выполняющих разминку, достигается только к концу первой минуты

интенсивной мышечной работы. Учитывая, что многие спортивные упражнения имеют продолжительность меньшую чем нужно для полного включения аэробного процесса, даже такую скорость развертывания можно рассматривать как недостаточно высокую. Другая особенность аэробного процесса заключается в том, что и при максимальной мощности в единицу времени в нем образуется меньше АТФ, чем расходуется за это же время при интенсивной физической работе.-При наличии только аэробного механизма энергообеспечения организма не обладал бы способностью быстро переходить от состояния покоя к напряженной работе, быстро повышать мощность по ходу упражнения, выполнять кратковременные интенсивные упражнения скоростно-силового характера. •

. Анаэробные процессы, включающие меньшее число химических реакций, чем аэробные, и не зависящие от поставки кислорода, превосходят аэробные процессы по скорости развертывания и характеризуются более высокой максимальной мощностью. Однако, их метаболическая емкость, зависящая от запасов креатинфосфата и гликогена, а также от устойчивости организма к воздействию продуктов анаэробного обмена значительно уступает аэробному процессу по метаболической емкости.-Можно выделить три основных анаэробных процесса: креатинфосфокиназную реакцию, гликолиз и миокиназную реакцию. Во всех трех процессах ресинтез АТФ происходит путем взаимодействия АДФ с макроэргическими соединениями либо присутствующими в мышцах (АДФ и креатинфосфат), либо образующимися в процессе анаэробных окислительных превращений углеводов (дифосфоглицериновая и фосфопировиноградная кислоты). Следует рассмотреть локализацию этих энергопоставляющих процессов в мышечном волокне и их взаимоотношение при мышечной деятельности. Потребление АТФ миофибриллами в саркоплазме приводит к образованию АДФ, которая тут же в саркоплазме (на миофибриллах), регенирируется в АТФ в ходе креатинкиназной реакции. Креатинфосфат (КФ) отдает свою фосфатную группу и превращается в креатин.

% Гликолиз также происходит в саркоплазме. Субстратом для него является глюкоза, которая образуется из мышечного гликогена или приносится в мышцу кровью. В процессе гликолиза ресинтезируется АТФ, а конечный продукт - молочная кислота - покидает мышцу, диффундируя в кровь. Аэробные процессы окисления локализованы в митохондриях, туда поступает кислород и субстраты окисления - образовавшаяся в процессе гликолиза пировиноградная кислота (ПВК) и жирные кислоты. ПВК и жирные кислоты окисляются, и в форме ацетил КоА вступают в цикл Кребса. е Следует указать на важную роль КФ в энергетике сердечной и скелетной мышц. КФ является связующим звеном между процессами, идущими с освобождением энергии (окислительное фосфорилирование, гликолиз), и процессами, ее потребляющими, он является переносчиком макроэргических фосфатных групп из митохондрий в саркоплазм)' - к миофибриллам. Мембраны митохондрий непроницаемы для АТФ, но проницаемы для КФ. Как только КФ отдает свою фосфатную группу АДФ,

креатин проникает в митохондрии и получает от образовавшейся там АТФ фосфатную группу.

Далее КФ из митохондрий движется в саркоплазму и снова вступает в реакцию с АДФ, восстанавливая АТФ. Механизм этот зависит от соотношения АТФ/АДФ в саркоплазме. Чем больше расход АТФ и увеличение содержания АДФ, тем интенсивнее он работает.

При выполнении любой мышечной деятельности действуют все механизмы ресинтеза АТФ, хотя вклад каждого из них в ее энергетическое обеспечение зависит от мощности и продолжительности упражнения.

Существует определенная последовательность включения и преобладания различных путей ресинтеза АТФ по мере продолжения мышечной деятельности: первые 2-3 с. расщепляется только АТФ, затем от 3 до 20 с. ее ресинтез происходит в основном за счет креатинфосфата, через 30-40 с. работы с максимальной интенсивностью основная доля энергии вырабатывается за счет анаэробного гликолиза, дальнейшее увеличение продолжительности работы повышает значимость в энергообеспечении аэробного механизма.

Вопросы к занятию

1. Анаэробные и аэробные пути ресинтеза АТФ при мышечной деятельности.

2. Дать' характеристику химическим превращениям в ходе креатинфосфокиназной реакции, ее мощности, емкости, скорости развертывания и роли при мышечной деятельности (привести примеры физических упражнений, где преобладает этот тип реакций).

3. Ресинтез АТФ в процессе гликолиза, эффективность и особенности этого процесса при мышечной деятельности.

4. Миокиназная реакция и ее роль в поддержании постоянства концентрации АТФ в работающих мышцах.

  1. Роль ресинтеза АТФ в процессе аэробного окисления в обеспечении энергией длительной мышечной деятельности.

  2. Взаимосвязь между анаэробным и аэробным процессами в мышцах.