
- •1. Предмет топографии и геодезии. Связь топографии и геодезии с другими науками
- •2. История развития геодезии. Федеральная служба геодезии и картографии и ее функции
- •3. Эволюция представлений о фигуре Земли. Современные воззрения на фигуру Земли 4. Понятие о методах определения фигуры и размеров Земли
- •5. Методы проектирования земной поверхности на плоскость
- •6. Искажения за кривизну Земли при проецировании поверхности Земли на плоскость
- •7. Системы координат, применяемые в геодезии
- •8. Сущность проекции Гаусса-Крюгера и использование ее в геодезии
- •10. План и карта
- •11. Свойства карты
- •12. Классификация карт
- •13. Элементы общегеографической карты
- •14. Масштабы. Различные способы выражения масштабов
- •15. Масштабный ряд государственных топографических карт
- •16. Разграфка и номенклатура топографических карт
- •17. Условные знаки топографических карт
- •20. Основные особенности оформления топографических карт и планов
- •21. Способы изображения рельефа
- •22. Ориентирование линий, истинный и магнитный азимуты, дирекционные углы, румбы, связь между ними
- •23. Элементы взаимного расположения точек в плоской системе координат. Прямая геодезическая задача
- •24. Элементы взаимного расположения точек в плоской системе координат. Обратная геодезическая задача
- •25. Методы определения координат геодезических пунктов
- •26. Триангуляция
- •28. Трилатерация
- •29. Космические методы определения координат
- •30. Спутниковые методы определения координат
- •32. Теодолитный ход и его элементы
- •33. Камеральная обработка разомкнутого теодолитного хода
- •34. Измерения, и их классификация
- •35. Погрешности измерений и их виды
- •36. Вероятнейшее значение измеряемой величины
- •38. Приборы для измерения линий
7. Системы координат, применяемые в геодезии
1.3.1. Астрономические координаты
Положение точки на поверхности сферы определяется двумя сферическими координатами - широтой и долготой (рис.1.2: точка O - центр сферы, точка P - северный полюс, точка P' - южный полюс). Проведем линию экватора QQ, полученную от пересечения плоскости экватора и поверхности сферы.
Плоскость меридиана точки A, лежащей на поверхности сферы, проходит через отвесную линию точки A и ось вращения Земли PP'. Меридиан точки A - это линия пересечения плоскости меридиана точки A с поверхностью сферы.
Широта точки A - это угол, образованный отвесной линией точки A и плоскостью экватора; этот угол лежит в плоскости меридиана точки.
Широта отсчитывается в обе стороны от экватора (к северу - северная широта, к югу - южная) и изменяется от 0o до 90o.
Долгота точки A - это двугранный угол между плоскостью начального меридиана и плоскостью меридиана точки A. Начальный меридиан проходит через центр главного зала Гринвичской обсерватории, расположенной вблизи Лондона. Долготы изменяются от 00 до 1800, к западу от Гринвича - западные и к востоку - восточные. Все точки одного меридиана имеют одинаковую долготу.
Проведем через точку A плоскость, параллельную плоскости экватора; линия пересечения этой плоскости с поверхностью сферы называется параллелью точки; все точки параллели имеют одинаковую широту.
Проведем плоскость G, касательную к поверхности сферы в точке A; эта плоскость называется плоскостью горизонта точки A. Линия пересечения плоскости горизонта и плоскости меридиана точки называется полуденной линией; направление полуденной линии - с юга на север. Если провести полуденные линии двух точек, лежащих на одной параллели, то они пересекутся в точке на продолжении оси вращения Земли PP' и образуют угол, который называется сближением меридианов этих точек.
Широту и долготу точек местности определяют из астрономических наблюдений, потому они и называются астрономическими координатами.
1.3.2. Геодезические координаты
На поверхности эллипсоида вращения положение точки определяется геодезическими координатами - геодезической широтой B и геодезической долготой L (рис.1.3).
Геодезическая широта точки - это угол, образованный нормалью к поверхности эллипсоида в этой точке и плоскостью экватора. Геодезическая долгота точки - это двугранный угол между плоскостью начального меридиана и плоскостью меридиана точки.
Плоскость геодезического меридиана проходит через точку A и малую полуось эллипсоида; в этой плоскости лежит нормаль к поверхности эллипсоида в точке A. Геодезическая параллель получается от пересечения поверхности эллипсоида плоскостью, проходящей через точку A и параллельной плоскости экватора.
Различие геодезических и астрономических координат точки A зависит от угла между отвесной линией данной точки и нормалью к поверхности эллипсоида в этой же точке. Этот угол называется уклонением отвесной линии; он обычно не превышает 5». В некоторых районах Земли, называемых аномальными, уклонение отвесной линии достигает нескольких десятков дуговых секунд. При геодезических работах невысокой точности астрономические и геодезические координаты не различают; их общее название - географические координаты - используется довольно часто.
Две координаты - широта и долгота - определяют положение точки на поверхности относимости (сферы или эллипсоида). Для определения положения точки в трехмерном пространстве нужно задать ее третью координату, которой в геодезии является высота. В нашей стране счет высот ведется от уровенной поверхности, соответствующей среднему уровню Балтийского моря; эта система высот называется Балтийской.
1.3.3. Прямоугольные координаты : Систему плоских прямоугольных координат образуют две взаимно перпендикулярные прямые линии, называемые осями координат; точка их пересечения называется началом или нулем системы координат. Ось абсцисс - OX, ось ординат - OY.