
- •1. Полупроводниковые приборы Электрические свойства полупроводниковых материалов
- •Механизм электропроводности полупроводников
- •Электронно-дырочный переход (эдп)
- •2. Полупроводниковые диоды Вольт-амперная характеристика (вах) диода
- •Параметры полупроводниковых диодов
- •Виды пробоев эдп Лавинный пробой
- •Тепловой пробой
- •Устройство точечных диодов
- •Устройство плоскостных диодов
- •Условное обозначение силовых диодов
- •Условное обозначение маломощных диодов
- •Стабилитрон
- •Туннельный диод
- •5.10. Обращенный диод
- •Варикап
- •Фотодиоды, полупроводниковые фотоэлементы и светодиоды
- •3. Транзисторы
- •Распределение токов в структуре транзистора
- •Схемы включения транзисторов. Статические вах
- •Схемы включения транзистора как усилителя электрических сигналов
- •Краткие характеристики схем включения транзистора. Области применения схем
- •Режимы работы транзистора
- •Работа транзистора в ключевом режиме
- •Малосигнальные и собственные параметры транзисторов
- •Параметры биполярных транзисторов
- •Классификация и системы обозначений (маркировка) транзисторов
- •5. Полевые транзисторы
- •6.15. Технологии изготовления транзисторов
- •Биполярные транзисторы с изолированным затвором (igbt - транзисторы)
- •5. Тиристоры Назначение и классификация
- •Диодные и триодные тиристоры
- •Переходные процессы при включении и выключении тиристора
- •Основные параметры тиристоров
- •Маркировка силовых тиристоров
- •Лавинные тиристоры
- •Симметричные тиристоры (симисторы)
- •Полностью управляемые тиристоры
- •Специальные типы тиристоров
- •Конструкции тиристоров
6.15. Технологии изготовления транзисторов
Имеются различные технологические способы изготовления полупроводниковых транзисторных структур: сплавления, диффузии, эпитаксиально-диффузионный, планарно-эпитаксиальный, ионной имплантации и др.
При сплавлении на поверхность кремния помещается, например, алюминий и нагревается в атмосфере инертного газа. После охлаждения расплава образуется капля смеси Аl–Si, в которой формируется область, насыщенная акцептором. Эпитаксия представляет метод выращивания кристалла в результате химической реакции на поверхности исходного монокристалла кремния. Через нагретый до 1150 °С очищенный исходный кремний в кварцевом реакторе продувается поток водорода с примесью SiС14 или SiН4, и атомы кремния выпадают в осадок, наращивая кристаллическую решетку подложки. Добавляя в газовую смесь РН3 или В2Н6, можно получить донорную или акцепторную примеси. Получается тонкая пленка с точно дозируемой концентрацией примеси.
Метод ионной имплантации связан с воздействием на поверхность кремниевой пластины ионов примеси, разогнанных в вакууме до энергий в несколько килоэлектрон-вольт. Это наиболее контролируемый и точный способ внедрения примеси.
Для биполярных транзисторов используются диффузионно-сплавная с меза-структурой и планарная технологии (рис. 6.39).
Полупроводниковая структура (рис. 6.39, а), полученная диффузионно-сплавным способом, включает в себя низкоомный высоколегированный кремний (диффузия, эпитаксия), области р- и n-типов (диффузия) с вплавленным электродом базы и область р-типа (сплавление) на границе с металлом вывода эмиттера. Выемка меза-структуры выполнена для ограничения активной области структуры для снижения собственной емкости.
Планарная технология (от английского слова planar – плоский) – высокопроизводительный метод группового изготовления полупроводниковых приборов и интегральных микросхем с предварительным нанесением "маски" на кремний. Технология включает в себя следующие основные операции: нанесение тонкой диэлектрической пленки на поверхность кремния, удаление способом фотолитографии или электронно-фотолитографическим способом определенного участка этой пленки, введение в кристалл через образовавшиеся "окна" донорных или акцепторных примесей, металлизация области вывода электродов. Пленка наносится на исходную кремниевую подложку, чтобы предотвратить проникновение примеси в определенные области структуры. Наиболее удобна "маска" из слоя SiO2. Для этого кремниевая пластина помещается в печь и нагревается в атмосфере влажного кислорода. Образуется пленка SiO2 толщиной около 1 мкм.
а б
Рис. 6.39. Диффузионно-сплавная (а) и планарная (6) полупроводниковые структуры биполярных транзисторов
Планарная полупроводниковая структура (рис. 6.39, 6) получена диффузией алюминия в исходный кремний n-типа. Эмиттерный переход и n+-слой сформированы диффузией фосфора в исходный кремний n-типа со стороны вывода коллектора и в диффузионный p-слой через центральное "окно" в пленке SiO2. Металлизация выполнена напылением алюминия. Подобная технология обеспечивает получение высокоомного коллектора, что по мере увеличения напряжения на коллекторе приводит к расширению объемного заряда в основном в сторону коллектора. Благодаря этому эффект модуляции базы выражен незначительно. Высокоомный слой в ключевом режиме транзистора вызывает значительное падение напряжения на коллекторе. Такая структура используется в высоковольтных транзисторах. В этом случае применяется кремниевая структура в форме диска (как в диодах), выполняется фаска. Для снижения толщины высокоомного слоя коллектора в низковольтных транзисторах применяется эпитаксиальное наращивание тонкого n-слоя на исходной пластине низкоомного n+-кремния.
Для уменьшения явления вытеснения эмиттерного тока в небольшой участок около базового вывода применяют специальную разветвенную сеть базовых и эмиттерных электродов мощных транзисторов. Применяется гребенчатая, эвольвентная и многоэмиттерная конструкция эмиттерных переходов.
Полупроводниковые структуры полевых транзисторов изготавливаются методом планарной технологии.
Полупроводниковая структура транзистора обычно помещается в герметический корпус из металла (рис. 6.40, а), пластмассы или керамики. Транзисторы малой мощности могут изготавливаться в бескорпусном исполнении (рис. 6.40, б).
В транзисторе с металлическим корпусом полупроводниковая структура 1 закрепляется на коваровом фланце 2, электроды эмиттера и базы (истока и затвора) 3 выводятся из корпуса через стеклянные изоляторы 4. Герметический корпус 5 приваривается к фланцу швом холодной сварки 6. Размеры транзистора такой конструкции могут иметь значения: Н = 2,5 + 12 мм и D1=13,7 + 30 мм. Мощные транзисторы на токи до сотен ампер имеют конструкцию, аналогичную силовым диодам, имеющую дополнительный третий вывод.
а б
Рис. 6.40. Конструкции транзисторов в металлическом корпусе (а)
и бескорпусные (б)
На рис. 6.40, б показан один из видов бескорпусного транзистора, используемого в гибридных микросхемах с гибкими выводами. К полупроводниковому кристаллу 1 методом термокомпрессии припаивают к контактным площадкам гибкие выводы 2 из золотой проволоки диаметром 30-50 мкм. Выводы дополнительно механически закрепляют с помощью защитного компаунда 3.
Кроме указанных основных конструктивных типов различают транзисторы других модификаций р–n–р- и n–р–n-типов, в стеклянно-металлическом, пластмассовом и металлокерамическом корпусах, с гибкими и жесткими выводами.