
- •Лекция 11 Магнитное поле в веществе.
- •3.14. Описание магнитного поля в магнетиках. Напряженность и индукция магнитного поля. Магнитная восприимчивость и магнитная проницаемость вещества.
- •3.15 . Классификация магнетиков.
- •3.16. Граничные условия для магнитного поля.
- •Лекция 12 Основы электронной теории магнетизма.
- •3.17. Магнитные моменты атомов и молекул.
- •3.18. Природа диамагнетизма. Теорема Лармора.
- •3.19. Парамагнетизм. Закон Кюри. Теория Ланжевена.
- •3.20. Элементы теории ферромагнетизма. Представление об обменных силах и доменной структуре ферромагнетиков. Закон Кюри - Вейсса.
- •Лекция 13
- •4. Основы электродинамики Движение заряженных частиц в постоянных электрическом и магнитном полях.
- •4.1. Силы, действующие на заряженную частицу в электромагнитном поле. Сила Лоренца.
- •4.2. Движение заряженной частицы в однородном постоянном электрическом поле.
- •4.3. Движение заряженной частицы в однородном постоянном магнитном поле.
- •4.4. Практические применения силы Лоренца. Эффект Холла.
- •Лекция 14 Явление электромагнитной индукции.
- •4.5. Явление электромагнитной индукции. Закон Фарадея и правило Ленца. Эдс индукции. Электронный механизм возникновения индукционного тока в металлах.
- •4.6. Примеры применения закона электромагнитной индукции.
- •4.7. Явление самоиндукции. Индуктивность проводников.
- •4.8. Пример вычисления индуктивности. Индуктивность соленоида.
- •4.9. Переходные процессы в электрических цепях, содержащих индуктивность. Экстратоки замыкания и размыкания.
- •4.10. Энергия магнитного поля. Плотность энергии.
- •Лекция 15 Уравнения Максвелла.
- •4.11. Сравнение основных теорем электростатики и магнитостатики.
- •4.12. Вихревое электрическое поле. Первое уравнение Максвелла.
- •4.13. Второе уравнение Максвелла.
- •4.14. Гипотеза Максвелла о токе смещения. Взаимопревращаемость электрических и магнитных полей. Третье уравнение Максвелла
- •4.15. Четвертое уравнение Максвелла.
- •4.16. Дифференциальная форма уравнений Максвелла.
- •4.17. Замкнутая система уравнений Максвелла. Материальные уравнения.
- •4.18. Следствия из уравнений Максвелла. Электромагнитные волны. Скорость света.
- •Лекция 16
- •5. Колебания и волны Электромагнитные колебания.
- •5.1. Электрический колебательный контур. Формула Томсона.
- •5.2. Свободные затухающие колебания. Добротность колебательного контура.
- •5.3. Вынужденные электрические колебания. Метод векторных диаграмм.
- •5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- •Лекция 17 Общие свойства и характеристики волновых процессов.
- •5.5. Волновое уравнение. Типы и характеристики волн.
- •5.6. Электромагнитные волны.
- •5.7. Энергия и импульс электромагнитной волны. Вектор Пойнтинга.
- •5.8. Упругие волны в твердых телах. Аналогия с электромагнитными волнами.
- •5.9. Стоячие волны.
- •5.10. Эффект Допплера.
- •Контрольные вопросы для самопроверки
- •Часть II. «Электричество и магнетизм»
- •Лекция 4. Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •Лекция 5. Постоянный электрический ток.
- •Лекция 6. Основы классической теории электропроводности металлов.
- •Лекция 7. Электрический ток в различных средах.
- •Лекция 9. Контур с током в постоянном магнитном поле.
- •Лекция 10. Основные уравнения магнитостатики в вакууме.
- •Лекция 11. Магнитное поле в веществе.
- •Лекция 12. Основы электронной теории магнетизма.
- •Лекция 13. Движение заряженных частиц в постоянных электрическом и магнитном полях.
- •Лекция 14. Явление электромагнитной индукции.
- •Лекция 15. Уравнения Максвелла.
- •Лекция 17. Общие свойства и характеристики волновых процессов.
- •Литература
5.9. Стоячие волны.
При наложении двух встречных волн с одинаковой амплитудой возникают стоячие волны. Возникновение стоячих волн имеет место, например, при отражении волн от преграды. Падающая на преграду волна и бегущая ей навстречу отраженная волна, налагаясь друг на друга, дают стоячую волну (рис.17.3).
Рис.17.3. Образование стоячей волны.
Стоячие волны бывают продольные (колебания стержней, звуковые волны в резонаторе музыкального инструмента) и поперечные (колебания закрепленной на концах натянутой струны, капиллярные волны на поверхности жидкости).
Рассмотрим две плоские монохроматические волны, распространяющиеся навстречу друг другу. Уравнения волн имеют вид:
,
.
Складывая эти уравнения и преобразовывая результат по формуле для суммы косинусов, получим:
.
Заменив в этом выражении волновое число
k его значением
,
придадим ему следующий вид:
,
где
- амплитуда колебаний.
Написанное уравнение – есть уравнение
стоячей волны. Из него видно, что в
стоячей волне колебания в каждой точке
происходят с той же частотой ω, что
и у налагающихся волн. При этом амплитуда
колебаний
зависит от координаты точки х.
В точках с координатами
амплитуда колебаний максимальна и
равна 2a. Эти точки
называются пучностями стоячей
волны.
В точках с координатами
амплитуда колебаний равна нулю. Эти
точки называют узлами стоячей
волны.
Расстояние между соседними пучностями
(узлами) составляет
.
Сами пучности и узлы сдвинуты относительно
друг друга на четверть длины волны
(рис.17.3). Фазы колебаний по разные стороны
от узла отличаются на π, то есть
точки, лежащие по разные стороны от
узла, колеблются в противофазе, а
все точки, заключенные между двумя
соседними узлами, колеблются в одной
фазе.
Отметим, что в стоячей волне дважды за период колебаний происходит переход кинетической энергии от узла (где скорость равна нулю) к пучности (где она максимальна) и обратно. То же происходит и с потенциальной энергией, но в обратной последовательности по отношению к кинетической энергии. В результате средний поток энергии через любое сечение в стоячей волне равен нулю.
5.10. Эффект Допплера.
При движении источника и(или) приемника звуковых волн относительно среды, в которой распространяется звук, воспринимаемая приемником частота ν, может оказаться отличной от частоты звука ν0, испускаемого источником. Это явление называется эффектом Допплера (Doppler Ch., 1803-1853).
Частота звука, воспринимаемая приемником, определяется по формуле:
где c – скорость звука
в данной среде;
и
- соответственно скорость движения
приемника и источника звука относительно
среды.
Из приведенной формулы видно, если расстояние между приемником и источником увеличивается, воспринимаемая частота звука ν оказывается меньше частоты источника ν0, а если сокращается, то больше.
Эффект Допплера имеет место не только в акустике, но и в оптике. Однако в отличие от акустического эффекта, эффект Допплера в оптике определяется только относительной скоростью источника и приемника, Связано это с тем, что свету (в отличие от звука) не требуется особой среды, которая служила бы носителем электромагнитных волн. Кроме того, в оптике эффект Допплера может быть как продольным, так и поперечным.
Соответствующие формулы имеют вид:
продольный эффект
;
поперечный эффект
,
где
– относительная скорость источника
и приемника электромагнитного излучения
(света); с – скорость света в вакууме.
При скоростях
написанные
формулы принимают соответственно вид:
и
.
Из приведенных формул видно, что
продольный эффект Допплера является
эффектом первого порядка малости
по
,
а поперечный - второго, то есть
поперечный эффект значительно слабее
продольного.