
- •Лекция 11 Магнитное поле в веществе.
- •3.14. Описание магнитного поля в магнетиках. Напряженность и индукция магнитного поля. Магнитная восприимчивость и магнитная проницаемость вещества.
- •3.15 . Классификация магнетиков.
- •3.16. Граничные условия для магнитного поля.
- •Лекция 12 Основы электронной теории магнетизма.
- •3.17. Магнитные моменты атомов и молекул.
- •3.18. Природа диамагнетизма. Теорема Лармора.
- •3.19. Парамагнетизм. Закон Кюри. Теория Ланжевена.
- •3.20. Элементы теории ферромагнетизма. Представление об обменных силах и доменной структуре ферромагнетиков. Закон Кюри - Вейсса.
- •Лекция 13
- •4. Основы электродинамики Движение заряженных частиц в постоянных электрическом и магнитном полях.
- •4.1. Силы, действующие на заряженную частицу в электромагнитном поле. Сила Лоренца.
- •4.2. Движение заряженной частицы в однородном постоянном электрическом поле.
- •4.3. Движение заряженной частицы в однородном постоянном магнитном поле.
- •4.4. Практические применения силы Лоренца. Эффект Холла.
- •Лекция 14 Явление электромагнитной индукции.
- •4.5. Явление электромагнитной индукции. Закон Фарадея и правило Ленца. Эдс индукции. Электронный механизм возникновения индукционного тока в металлах.
- •4.6. Примеры применения закона электромагнитной индукции.
- •4.7. Явление самоиндукции. Индуктивность проводников.
- •4.8. Пример вычисления индуктивности. Индуктивность соленоида.
- •4.9. Переходные процессы в электрических цепях, содержащих индуктивность. Экстратоки замыкания и размыкания.
- •4.10. Энергия магнитного поля. Плотность энергии.
- •Лекция 15 Уравнения Максвелла.
- •4.11. Сравнение основных теорем электростатики и магнитостатики.
- •4.12. Вихревое электрическое поле. Первое уравнение Максвелла.
- •4.13. Второе уравнение Максвелла.
- •4.14. Гипотеза Максвелла о токе смещения. Взаимопревращаемость электрических и магнитных полей. Третье уравнение Максвелла
- •4.15. Четвертое уравнение Максвелла.
- •4.16. Дифференциальная форма уравнений Максвелла.
- •4.17. Замкнутая система уравнений Максвелла. Материальные уравнения.
- •4.18. Следствия из уравнений Максвелла. Электромагнитные волны. Скорость света.
- •Лекция 16
- •5. Колебания и волны Электромагнитные колебания.
- •5.1. Электрический колебательный контур. Формула Томсона.
- •5.2. Свободные затухающие колебания. Добротность колебательного контура.
- •5.3. Вынужденные электрические колебания. Метод векторных диаграмм.
- •5.4. Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- •Лекция 17 Общие свойства и характеристики волновых процессов.
- •5.5. Волновое уравнение. Типы и характеристики волн.
- •5.6. Электромагнитные волны.
- •5.7. Энергия и импульс электромагнитной волны. Вектор Пойнтинга.
- •5.8. Упругие волны в твердых телах. Аналогия с электромагнитными волнами.
- •5.9. Стоячие волны.
- •5.10. Эффект Допплера.
- •Контрольные вопросы для самопроверки
- •Часть II. «Электричество и магнетизм»
- •Лекция 4. Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •Лекция 5. Постоянный электрический ток.
- •Лекция 6. Основы классической теории электропроводности металлов.
- •Лекция 7. Электрический ток в различных средах.
- •Лекция 9. Контур с током в постоянном магнитном поле.
- •Лекция 10. Основные уравнения магнитостатики в вакууме.
- •Лекция 11. Магнитное поле в веществе.
- •Лекция 12. Основы электронной теории магнетизма.
- •Лекция 13. Движение заряженных частиц в постоянных электрическом и магнитном полях.
- •Лекция 14. Явление электромагнитной индукции.
- •Лекция 15. Уравнения Максвелла.
- •Лекция 17. Общие свойства и характеристики волновых процессов.
- •Литература
5.8. Упругие волны в твердых телах. Аналогия с электромагнитными волнами.
Законы распространения упругих волн в твердых телах вытекают из общих уравнений движения однородной упруго деформированной среды:
,
где ρ –
плотность среды; ui
– компоненты вектора
упругого смещения;
σik
= ciklmεlm
– тензор напряжений;
-
тензор деформации;
ciklm
– тензор
упругих модулей.
Отсюда следует, что вектор
упругого смещения
удовлетворяет волновому
уравнению вида:
.
Если искать решение этого уравнения в виде плоской монохроматической волны
,
то ему можно придать вид:
,
где
- тензор приведенных
упругих модулей;
-
единичный вектор
волновой нормали; c
= ω/k
– фазовая скорость
упругой волны.
Полученное уравнение является основным для всей теории упругих волн в твердых телах, и носит название уравнения Кристоффеля. Из него, в частности, следует, что в анизотропных твердых телах (кристаллах) по любому направлению могут распространяться три упругие волны, которые в общем случае не являются ни чисто продольными, ни чисто поперечными. Фазовые скорости их также различны.
Изотропные
твердые тела характеризуются только
двумя упругими модулями – модулем
Юнга E
и модулем сдвига
G.
В таких телах две
из трех упругих волн всегда являются
чисто поперечными
и имеют одинаковую
фазовую скорость ct;
третья
волна является чисто
продольной и имеет
свою фазовую скорость cl
> ct.
В данном случае исходное волновое
уравнение распадается на два
независимых волновых
уравнения для двух
поперечных волн
и одной продольной
волны
:
;
,
где
-
фазовая скорость
поперечной
волны;
-
фазовая скорость продольной
волны.
Как и электромагнитные
волны, упругие волны переносят
энергию и импульс.
Перенос энергии в упругой волне
осуществляется за счет потока вектора
Умова
,
аналогичного вектору
Пойнтинга
,
и имеющему смысл плотности
потока энергии.
Дифференциальное уравнение закона
сохранения энергии
для упругого поля имеет аналогичный
вид:
,
где
-
плотность энергии упругой волны, которая слагается из кинетической энергии колеблющихся частиц среды и потенциальной энергии упругой деформации;
-
компоненты вектора Умова (Умов Н.А., 1846-1915).
Альтернативный подход к описанию закономерностей распространения упругих волн в кристаллах основан на представлении первичного волнового уравнения второго порядка системой дифференциальных уравнений в частных производных первого порядка от вектора смещения (Наими Е.К., Хзарджян С.М., 1978). При этом уравнения для поперечных компонент вектора смещения оказываются полностью аналогичными уравнениям Максвелла для электромагнитного поля в вакууме, а для продольных компонент – аналогичными уравнениям плазменных колебаний. Соответствующие уравнения записываются в виде:
для поперечных компонент
для продольных компонент
Преимуществом данного подхода является то, что он открывает возможность исследования упругих волновых процессов в кристаллах на основе математического аппарата, разработанного в электродинамике сплошных сред.