
- •Часть II. Электричество и магнетизм.
- •Цель обучения
- •Содержание лекционного курса «Электричество и магнетизм» Семестр 3
- •Раздел 1. Электростатика /1а, 1б, 2б, 3б, 4б, 6б, 7б/
- •1.1. Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1.2. Основные уравнения электростатики в вакууме.
- •1.3. Электростатическое поле в диэлектриках.
- •1.4. Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •Раздел 2. Постоянный электрический ток /1а, 1б, 2б, 3б, 4б, 6б, 7б/
- •2.1. Постоянный электрический ток.
- •2.2. Основы классической теории электропроводности металлов.
- •2.3. Электрический ток в различных средах.
- •Раздел 3. Магнитное поле постоянного тока. /1а, 1б, 2б, 3б, 4б, 7б, 8б/
- •Раздел 4. Квазистационарные электромагнитные поля. Электромагнитные колебания и волны /2а, 1б, 2б, 3б, 5б, 7б, 8б/
- •4.4. Общие свойства и характеристики волновых процессов.
- •Лекция 1 Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.
- •1. Электростатика
- •1.1. Электрические заряды. Способы получения зарядов. Закон сохранения электрического заряда.
- •1.2. Взаимодействие электрических зарядов. Закон Кулона. Применение закона Кулона для расчета сил взаимодействия протяженных заряженных тел.
- •1.3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Лекция 2 Основные уравнения электростатики в вакууме.
- •1.4. Поток вектора напряженности электрического поля. Теорема Гаусса.
- •Применение теоремы Гаусса для расчета электрических полей.
- •Работа сил поля по перемещению заряда. Потенциал и разность потенциалов электрического поля.
- •1.7. Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •1.8. Эквипотенциальные линии и поверхности и их свойства.
- •1.9. Потенциалы простейших электрических полей.
- •Лекция 3 Электростатическое поле в диэлектриках.
- •1.10. Поляризация диэлектриков. Свободные и связанные заряды. Основные виды поляризации диэлектриков.
- •2) Деформационная или электронная поляризация (неполярные диэлектрики).
- •3) Ионная поляризация (кристаллы).
- •4) Сегнетоэлектрики и пироэлектрики.
- •1.11. Вектор поляризации и вектор электрической индукции.
- •1.12. Напряженность электрического поля в диэлектрике.
- •Лекция 4 Проводники в электростатическом поле. Конденсаторы. Энергия электрического поля.
- •1 .15. Равновесное распределение зарядов на проводниках.
- •1.16. Электроемкость проводников. Конденсаторы.
- •1.17. Вычисление емкости простых конденсаторов.
- •1.18. Соединение конденсаторов.
- •1) Последовательное соединение.
- •2) Параллельное соединение.
- •1.19. Энергия системы неподвижных точечных зарядов.
- •1.20. Энергия заряженного проводника и заряженного конденсатора.
- •1.21. Энергия электростатического поля.
- •Лекция 5
- •2. Постоянный электрический ток
- •2.1. Характеристики тока. Сила и плотность тока. Падение потенциала вдоль проводника с током.
- •2.2. Закон Ома для однородного участка цепи. Сопротивление проводников.
- •2.3. Дифференциальная форма закона Ома.
- •2.4. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Напряжение на зажимах источника тока.
- •2.6. Разветвленные цепи. Правила Кирхгофа.
- •2.8. Работа и мощность постоянного тока. Закон Джоуля – Ленца.
- •2.9. Кпд источника тока.
- •Лекция 6 Основы классической теории электропроводности металлов.
- •2.10. Природа носителей тока в металлах.
- •2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.
- •2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.
- •2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводимости.
- •Лекция 7 Электрический ток в различных средах.
- •2.14. Электрический ток в электролитах. Законы электролиза Фарадея.
- •2.15. Электропроводность газов. Основные виды газового разряда. Плазма.
- •2.16. Электрический ток в вакууме. Работа выхода электрона из металла. Явление термоэлектронной эмиссии.
- •Лекция 8
- •3. Магнитостатика
- •Постоянное магнитное поле.
- •3.1. Взаимодействие проводников с током. Закон Ампера.
- •3.2. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •Лекция 9 Контур с током в магнитном поле.
- •3.4. Магнитный момент тока.
- •3.5. Магнитное поле на оси кругового витка с током.
- •3.6. Момент сил, действующих на контур с током в магнитном поле.
- •3.7. Энергия контура с током в магнитном поле.
- •3.8. Контур с током в неоднородном магнитном поле.
- •3.9. Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Лекция 10 Основные уравнения магнитостатики в вакууме.
- •3.10. Поток вектора магнитной индукции. Теорема Гаусса в магнитостатике. Вихревой характер магнитного поля.
- •3.11. Теорема о циркуляции магнитного поля. Магнитное напряжение.
- •3.12. Магнитное поле соленоида и тороида.
- •1) Магнитное поле на оси прямого длинного соленоида.
- •2) Магнитное поле на оси тороида.
-
Напряжение на зажимах источника тока.
Как видно из рис.5.12:
или
Рис.5.12. Напряжение на зажимах источника тока.
График зависимости
приведен
на рис.5.13.
П
V
V = ε для разомкнутой цепи.
Рис.5.13. Зависимость V от сопротивления внешней нагрузки R.
2.6. Разветвленные цепи. Правила Кирхгофа.
Электрическая
цепь, содержащая в себе узлы,
называется разветвленной. Узел
– место в цепи, где сходятся три или
более проводников (рис.5.14). Для расчета
разветвленных цепей применяют правила
Кирхгофа (Kirchhoff
G.,1824-1887), являющиеся прямым
следствием основных законов теории
электричества. Этих правил два.
Рис.5.14. Участок разветвленной цепи.
Первое правило: алгебраическая сумма всех токов, сходящихся в узле равна нулю:
Первое правило Кирхгофа является следствием закона сохранения заряда в применении к узлу, через который протекают постоянные токи. Если в цепи имеется N узлов, то пишется N -1 уравнение для любых узлов.
Второе правило: для любого замкнутого контура, выделенного внутри разветвленной цепи, алгебраическая сумма падений напряжений на сопротивлениях равна алгебраической сумме ЭДС, действующих в этом контуре:
Второе правило Кирхгофа является следствием равенства нулю циркуляции электро- статического поля по замкнутому контуру, то есть следствием его потенциальности.
. 2.7. Соединение сопротивлений.
Соединение сопротивлений бывает последовательным, параллельным и смешанным.
1) Последовательное соединение.
При последовательном соединении ток, текущий через все сопротивления, одинаковый, а падения напряжения разные (рис.5.15).
Рис.5.15. Последовательное соединение сопротивлений.
, откуда следует,
что
2) Параллельное соединение.
При параллельном соединении падения напряжения на всех сопротивлениях одинаковые, а токи, текущие в них, разные (рис.5.16).
Рис.5.16. Параллельное соединение сопротивлений.
, откуда следует,
что
2.8. Работа и мощность постоянного тока. Закон Джоуля – Ленца.
.При протекании по проводнику электрического тока проводник нагревается. Нагревание происходит за счет работы, совершаемой силами поля над носителями заряда:
,
Рис.5.17. Проводник с током.
Джоуль (Joule J., 1818-1889) и независимо от него Э.Х.Ленц (1804-1865) установили экспериментально, что количество теплоты, выделяющейся в проводнике, пропорционально квадрату силы тока, сопротивлению проводника и времени протекания тока:
Если сила тока изменяется со временем, то за промежуток времени Δt = t2 – t1 выделится теплота:
Написанные соотношения выражают собой закон Джоуля – Ленца.
Если теплоту
измерять в калориях, то:
.
Количество теплоты, выделяющееся в единице объема проводника за единицу времени, называется удельной мощностью:
, где
-
плотность тока.
Это соотношение представляет собой закон Джоуля-Ленца в дифференциальной форме:
Работа, производимая током за единицу времени, называется мощностью:
.
Размерность
мощности в СИ:
(ватт).