
- •1. Задачи, системы и типовая программа технической диагностики
- •1.1. Цель и задачи технической диагностики
- •1.2. Виды дефектов, качество и надежность машин
- •1.3. Восстановление работоспособности оборудования
- •1.4. Виды состояния оборудования, системы технической диагностики
- •1.5. Типовая программа технического диагностирования
- •1.6. Виды неразрушающего контроля, его стандартизация и метрологическое обеспечение
- •2. Методы вибрационной диагностики
- •2.1. Сущность вибродиагностики и ее основные понятия
- •2.2. Средства контроля и обработки вибросигналов
- •2.3. Виброактивность роторов
- •2.4. Виброактивность подшипников и их диагностика
- •2.5. Виброактивность зубчатых передач и трубопроводов
- •2.6. Вибродиагностика и вибромониторинг общих дефектов машинного оборудования
- •3. Оптические методы, визуальный и измерительный контроль
- •3.1. Классификация оптических методов контроля
- •3.2. Особенности визуального контроля
- •3.3. Визуально-оптический и измерительный контроль
- •4. Капиллярный контроль
- •4.1. Физическая сущность капиллярного контроля
- •4.2. Классификация и особенности капиллярных методов
- •4.3. Технология капиллярного контроля
- •4.4. Проверка чувствительности капиллярного контроля
- •5. Течеискание
- •5.1. Термины и определения течеискания, количественная оценка течей
- •5.2. Способы контроля и средства течеискания
- •5.3. Масс-спектрометрический метод
- •5.4. Галогенный и катарометрический методы
- •5.5. Жидкостные методы течеискания
- •5.6. Акустический метод
- •6. Радиационный контроль
- •6.1. Источники ионизирующего излучения
- •6.2. Контроль прошедшим излучением
- •6.3. Радиографический контроль сварных соединений
- •7. Магнитный неразрушающий контроль
- •7.1. Область применения и классификация
- •7.2. Магнитные характеристики ферромагнетиков
- •7.3. Магнитные преобразователи
- •7.4. Магнитная дефектоскопия, магнитопорошковый метод
- •7.5. Дефектоскопия стальных канатов
- •7.6. Метод магнитной памяти
- •7.7. Магнитная структуроскопия
- •8. Вихретоковый, электрический и тепловой виды контроля
- •8.1. Вихретоковый вид контроля
- •8.2. Электрический вид контроля
- •8.3. Тепловой вид контроля
- •9. Ультразвуковой неразрушающии контроль
- •9.1. Акустические колебания и волны
- •9.2. Затухание ультразвука
- •9.3. Трансформация ультразвуковых волн
- •9.4. Способы получения и ввода ультразвуковых колебаний. Конструкция пьезопреобразователей
- •9.5. Аппаратура, методы и технология ультразвукового контроля
- •10. Акустико-эмиссионный метод
- •10.1. Источники акустической эмиссии
- •10.2. Виды сигналов аэ
- •10.3. Оценка результатов аэ контроля
- •10.4. Аппаратура аэ контроля
- •10.5. Порядок проведения и область применения аэ контроля
- •11. Деградационные процессы оборудования и материалов
- •11.1. Деградационные процессы, виды предельных состояний
- •11.2. Характеристики деградационных процессов
- •11.3. Виды охрупчивания сталей и их причины
- •11.4. Контроль состава и структуры конструкционных материалов
- •11.5. Оценка механических свойств материалов
- •11.6. Способы отбора проб металла и получения информации о его свойствах
- •12. Оценка остаточного ресурса оборудования
- •12.1. Методология оценки остаточного ресурса
- •12.2. Оценка ресурса при поверхностном разрушении
- •12.3. Прогнозирование ресурса при язвенной коррозии
- •12.4. Прогнозирование ресурса по трещиностойкости и критерию «течь перед разрушением»
- •12.5. Оценка ресурса по коэрцитивной силе
- •12.6. Оценка ресурса по состоянию изоляции
- •13. Особенности диагностирования типового технологического оборудования
- •13.1. Диагностирование буровых установок
- •13.2. Диагностирование линейной части стальных газонефтепроводов и арматуры
- •13.3. Диагностирование сосудов и аппаратов, работающих под давлением
- •13.4. Диагностирование установок для ремонта скважин
- •13.5. Диагностирование вертикальных цилиндрических резервуаров для нефтепродуктов
- •13.6. Диагностирование насосно-компрессорного оборудования
- •Список литературы
- •Оглавление
4.3. Технология капиллярного контроля
Капиллярные методы неразрушающего контроля широко используют в процессе технической диагностики различных видов нефтегазового оборудования: например, для выявления поверхностных дефектов корпусов вертлюгов, щек талевых блоков, буровых крюков и др. Контроль проводят по следующим этапам: подготовка поверхности объекта к контролю, обработка дефектоскопическими материалами, осмотр и выявление дефектов, окончательная очистка контролируемой поверхности.
Подготовка объекта к контролю включает в себя очистку и сушку контролируемой поверхности и полостей дефектов. Цель этого этапа заключается в обеспечении доступа индикаторного пенетранта в дефекты, а также в устранении возможности образования фона и ложных индикаций. Очистка может производиться следующими способами: механическим, растворителями, химическим, электрохимическим, ультразвуковым. Механический способ используют при наличии на поверхности ржавчины, окалины, сварочного флюса, краски и т. д. Очистку осуществляют путем пескоструйной обработки, металлическими щетками, механическим шлифованием, шабрением и др. Недостатком этого способа является высокая вероятность закрытия устьев полостей дефектов.
При отсутствии механических препятствий проникновения пенетранта для очистки поверхности применяют органические растворители и водные моющие средства, наносимые вручную. Для интенсификации процесса очистки изделие может погружаться в ультразвуковую ванну с моющим раствором. В более ответственных случаях применяют химическую или электрохимическую очистку, заключающуюся в травлении поверхности слабыми растворами кислот или травлении под воздействием электрического поля.
После очистки изделия непосредственно перед нанесением пенетранта производится его сушка с целью удаления воды или растворителя с поверхности изделия и полостей дефектов, затем проверка контролируемой поверхности на степень обезжиривания. Наиболее простой метод оценки степени обезжиривания основан на способности воды или моющего раствора сохранять на обезжиренной поверхности металла в течение определенного времени сплошности, т. е. не собираться в капли. Поверхность считается обезжиренной, если в течение 60 с сплошность пленки воды не нарушилась.
Обработка дефектоскопическими материалами составляет основную часть процесса контроля и выполняется в следующем порядке: нанесение пенетранта на контролируемую поверхность, удаление избытков пенетранта, нанесение проявителя. Нанесение пенетранта производится погружением, кистью или напылением с помощью аэрозольного баллона, пульверизатора или краскораспылителя. Для лучшего проникновения в полости дефектов пенетрант в зависимости от его состава выдерживают на поверхности 10...20 мин, после чего избыток пенетранта удаляют с помощью протирки обтирочными материалами, смоченными в очистителе, или промыванием струей воды. В некоторых случаях для интенсификации пропитки применяют воздействие ультразвуковых колебаний, повышение избыточного давления или, наоборот, вакуум и рование. Неполное удаление пенетранта с поверхности приводит к образованию фона и появлению ложных индикаций. Вместе с тем при удалении избытков пенетранта важно не вымыть его из полостей дефектов. Иногда для окончательного удаления избытков пренетранта используют специальные вещества — гасители, позволяющие в результате химического воздействия на тонкий поверхностный слой пенетранта устранить фон на контролируемой поверхности (ГОСТ 18442—80).
Проявление — это процесс образования индикаторных следов в местах наличия дефектов. Проявитель в виде тонкодисперсного порошка или водной или спиртовой суспензии наносят на поверхность после ее подсушивания. Способы нанесения те же, что и для пенетранта. Важным требованием является равномерность распределения пенетранта по поверхности.
Выявление дефектов производится визуально — путем осмотра контролируемой поверхности через 10...20 мин после нанесения проявителя. Для ускорения проявления может использоваться вакуумирование, нагрев или вибрация. При яркостном и цветном методе обязательным условием является хорошее освещение поверхности объекта контроля. При использовании люминесцентного метода выявление дефектов производится в затемненном пространстве по индикаторным следам, светящимся под воздействием ультрафиолетового излучения. Требования к уровню освещенности при разных методах и допускаемые к применению источники света приведены в ГОСТ 18442-80.
В ряде случаев проявить индикаторные следы удается без предварительной пропитки пенетрантом, используя свойства технологической среды конкретного оборудования. Так, если в трещине находится щелочь, то ее можно проявить фенолфталеином. Если оборудование работает в масляной среде, то ее удаляют (протирают) и осматривают при облучении ультрафиолетовой лампой. Индикаторные следы всех дефектов становятся отчетливо заметными, так как масло является хорошим люминофором. При наличии сомнений поверхность протирают еще раз и контроль повторяют заново.