Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Обмен углево.doc
Скачиваний:
13
Добавлен:
26.11.2018
Размер:
706.56 Кб
Скачать

9.1.5. Темновая стадия фотосинтеза

В ходе темновых реакций фотосинтеза происходит эндергонический процесс образования углеводов из диоксида углерода (СО2) и воды, в котором в качестве энергетических источников используются продукты световых реакций НАДФН и АТФ. Последовательность химических превращений в темновой стадии фотосинтеза была выяснена американскими биохимиками М Кальвином, А. Бенсоном и Д. Басхемом в 1946-53 г.г. и впоследствии названа циклом Кальвина вследствие того, что открытые ими превращения имели циклический механизм. Все эти реакции протекают в строме – жидкой дисперсионной среде хлоропластов.

Для установления первичных продуктов, которые образуются при фотосинтезе из СО2 и Н2О, М. Кальвин и его сотрудники использовали культуру водорослей хлореллы, в которую вводили на свету меченный 14С СО2 в виде Н214СО3 и через короткие промежутки времени отбирали пробы клеток суспензии водорослей и фиксировали их метанолом. После этого из клеток хлореллы выделяли углеводы и другие органические вещества и в них определяли наличие радиоактивной метки, обусловленной включением в эти продукты 14С. При этом было установлено, что при коротких экспозициях (0,1-5 сек.) клеток водорослей в суспензионной среде, содержащей 14СО2, большая часть радиоактивной метки обнаруживалась в карбоксильной группе 3-фосфоглицериновой кислоты. Последнее свидетельствовало о том, что фосфоглицериновая кислота является первичным продуктом фотосинтеза.

В дальнейшем с использованием радиоактивной метки в виде 14С и 32Р было показано, что первичным акцептором, с которым взаимодействует СО2 служит рибулозо-1,5-дифосфат. И эту реакцию катализирует фермент рибулозодифосфаткарбоксилаза (4.1.1.39). Учитывая, что для образования карбоксильной группы кроме СО2 требуется еще молекула воды, первую реакцию цикла Кальвина можно записать следующим образом:

СН2О Р СН2О Р СООН (1)

| | |

С=О НО-С-Н + Н-С-ОН

| + *СО2 + Н2О  | |

Н-С-ОН  СН2О Р *СООН СН2О Р

|  | 2 молекулы

Н-С-ОН С-ОН 3-фосфоглицериновой

| || кислоты

СН2О Р С-ОН

рибулозо-1,5- |

дифосфат Н-С-ОН

|

СН2О Р

енольная

форма

2 молекулы

3-фосфоглицериновой

рибулозо-1,5- енольная форма кислоты

дифосфат

Диоксид углерода в ходе реакции взаимодействует с енольной формой рибулозо-1,5-дифосфата, при этом образуется неустойчивый продукт – β–кетокислота, который под действием фермента гидролизуется, превращаясь в 3-фосфоглицериновую кислоту. При этом радиоактивный углерод обнаруживается в карбоксильной группе одной из двух синтезирующихся молекул 3-фосфоглицериновой кислоты.

Фермент рибулозодифосфаткарбоксилаза в большом количестве содержится в хлоропластах растений (до 16 % от общего количества белков), а также в клетках зелёных и пурпурных бактерий. Он состоит из восьми пар неидентичных субъединиц и имеет большую молекулярную массу (560000). Для проявления каталитической активности этого фермента необходимо присутствие катионов Mg2+.

Рибулозодифосфаткарбоксилаза аллостерически активируется фруктозо-6-фосфатом и аллостерически ингибируется фруктозо-1,6-дифос-фатом, которые образуются при последующих превращениях в цикле Кальвина 3-фосфоглицериновой кислоты, являющейся продуктом действия данного фермента. Образовавшаяся под действием рибулозодифосфаткарбоксилазы 3-фосфоглицериновая кислота в последующих реакциях восстанавливается до альдегида.

Вначале молекула 3-фосфоглицериновой кислоты активируется путём фосфорилирования с участием АТФ. Эту реакцию катализирует фермент фосфоглицераткиназа (2.7.2.3), включающий 355 аминокислотных остатков и активируемый катионами Мg2+:

СООН О

‌ фосфоглицерат- ‖ (2)

Н–С–ОН + АТФ  С– О Р + АДФ

киназа |

СН2О Р Н–С–ОН

|

СН2О Р

3-фосфоглицериновая 1,3-дифосфоглицериновая

кислота кислота

Продукт реакции 1,3-дифосфоглицериновая кислота представляет собой макроэргическое соединение, имеющее высокое значение потенциала переноса фосфатной группы ( при гидролизе Gºˈ= 49 кДжмоль-1), в связи с чем оно уже легко подвергается восстановлению в следующей реакции под действием фермента триозофосфатдегидрогеназы (1.2.1.9) с участием восстановленной формы динуклеотида НАДФН:

О О (3)

‖ триозофосфат- ‖

С–О~ Р дегидрогеназа С–Н

+ НАДФ·Н + Н+  ‌ + НАДФ+ + Н3РО4

Н–С–ОН Н–С–ОН

| ‌

СН2О Р СН2О Р

1,3-дифосфоглице- 3-фосфоглице-

риновая кислота риновый альдегид

В ходе восстановительной реакции происходит синтез 3-фосфоглицерино-вого альдегида и отщепление от 1,3-дифосфоглицериновой кислоты минерального фосфата. Участвующие в синтезе 3-фосфоглицеринового альдегида АТФ и НАДФН являются продуктами световой стадии фотосинтеза.

Как было показано ранее, в результате связывания одной молекулы СО2 в первой реакции цикла Кальвина образуются 2 молекулы 3-фосфо-глицериновой кислоты, которые в ходе реакций 2 и 3 превращаются в две молекулы 3-фосфоглицеринового альдегида, а последние довольно легко изомеризуются в фосфодиоксиацетон. Реакцию изомеризации катализирует фермент триозофосфатизомераза (5.3.1.1):

Н

С=О триозофосфат- СН2ОН (4)

|  |

Н–С–ОН  С=О

| изомераза |

СН2О Р СН2О Р

3-фосфоглице- фосфодиокси-

риновый альдегид ацетон

Представленная реакция легко обратима, так как сопровождается небольшим изменением свободной энергии. Фермент триозофосфатизомераза отличается высокой молярной активностью (2800 катмоль-1 фермента для превращения в фосфодиоксиацетон).

Образовавшиеся триозофосфаты не накапливаются в хлоропластах. Под действием фермента альдолазы (4.1.2.13) они конденсируются, превращаясь во фруктозо-1,6-дифосфат:

Н СН2О Р

‌ ‌ (5)

СН2ОН С=О С=О

| | альдолаза ‌

С=О + Н–С–ОН  НО–С–Н

| | |

СН2О Р СН2О Р Н–С–ОН

фосфодиокси- 3-фосфоглицери- |

ацетон новый альдегид Н–С–ОН

|

СН2О Р

фруктозо-1,6-дифосфат

После этого от фруктозо-1,6-дифосфата происходит гидролитическое отщепление остатка фосфорной кислоты. Реакцию катализирует фермент фруктозо-1,6-дифосфатаза (3.1.3.11). В ходе этой реакции фруктозодифосфат превращается во фруктозо-6-фосфат:

СН2О Р СН2ОН (6)

| |

С=О фруктозо- С=О

| 1,6-дифос- |

НО–С–Н + Н2О  НО–С–Н + Н3РО4

| фатаза |

Н–С–ОН Н–С–ОН

| |

Н–С–ОН Н–С–ОН

| |

СН2О Р СН2О Р

фруктозо-1,6-дифосфат фрутозо-6-фосфат

Фруктозо-1,6-дифосфатаза – активируемый светом фермент. Его активирование происходит с участием восстановленного под действием света ферредоксина, который совместно со специфическим белком переводит фруктозо-1,6-дифосфатазу в активное состояние. От действия этого фермента зависит интенсивность включения СО2 в первой реакции цикла Кальвина. Если активность фруктозо-1,6-дифосфатазы низкая, то повышается концентрация фруктозо-1,6-дифосфата, который аллостерически ингибирует фермент рибулозодифосфаткарбоксилазу, вследствие чего понижается скорость первой реакции цикла Кальвина, катализируемой данным ферментом. А если фруктозо-1,6-дифосфатаза находится в активной форме, то повышается концентрация фруктозо-6-фосфата, являющегося аллостерическим активатором рибулозодифосфаткарбоксилазы. При таких условиях связывание СО2 проходит с максимальной скоростью.

На следующем этапе фотосинтеза фермент транскетолаза (2.2.1.1) катализирует перенос концевого двууглеродного радикала, содержащего кетонную группу, от фруктозо-6-фосфата на 3-фосфоглицериновый альдегид, который образуется в результате присоединения к рибулозо-1,5-дифосфату ещё одной молекулы СО2 и повторения реакций 2 и 3. В результате взаимодействия гексозы и триозы синтезируются новые углеводные продукты – эритрозо-4-фосфат и ксилулозо-5фосфат:

Н (7)

СН2ОН Н ‌

| ‌ С=О СН₂ОН

С=О С=О | |

| | транскето- Н–С–ОН + С=О

НО–С–Н + Н–С–ОН  | |

| | лаза Н–С–ОН НО–С–Н

Н–С–ОН СН2О Р | |

| СН2О Р Н–С–ОН

Н–С–ОН 3-фосфоглицери- эритрозо-4- |

| новый альдегид фосфат СН2О Р

СН2О Р ксилулозо-5-

фруктозо-6-фосфат фосфат

Ещё одна молекула 3-фосфоглицеринового альдегида, синтезированная в результате связывания второй молекулы СО2, изомеризуется далее в реакции 4 в фосфодиоксиацетон, который затем соединяется с эритрозо-4-фосфатом, образуя седогептулозо-1,7-дифосфат. Эту реакцию катализирует фермент трансальдолаза (2.2.1.2):

Н СН2О Р (8)

‌ |

СН2О Р С=О С=О

| | трансальдо- |

С=О + Н–С–ОН  НО–С–Н

| | лаза |

СН2ОН Н–С–ОН Н–С–ОН

фосфодиоксиацетон | |

СН2О Р Н–С–ОН

эритрозо-4-фосфат |

Н–С–ОН

|

СН2О Р

седогептулозо-

1,7-дифосфат

В

СН2О Р СН2ОН (9)

| |

С=О С=О

| фосфатаза |

НО-С-Н + Н2О  НО-С-Н + Н3РО4

| |

Н-С-ОН Н-С-ОН

| |

Н-С-ОН Н-С-ОН

| |

Н-С-ОН Н-С-ОН

| |

СН2О Р СН2О Р

седогептулозо-1,7- седогептулозо-7-

дифосфат фосфат

следующей реакции происходит гидролиз седогептулозо-1,7-ди-фосфата, который катализирует специфическая фосфатаза. В ходе реакции от седогептулозо-1,7-дифосфата отщепляется остаток фосфорной кислоты и таким образом осуществляется синтез седогептулозо-7-фосфата:

После этого снова вступает в действие фермент транскетолаза, катализирующий перенос двууглеродного радикала с кетогруппой от седогептулозо-7-фосфата на 3-фосфоглицериновый альдегид, который синтезируется за счёт связывания в первой реакции цикла Кальвина уже третьей молекулы СО2. Продукты реакции, катализируемой транскетолазой, – пятиугле-родные производные моносахаридов ксилулозо-5-фосфат и рибозо-5-фосфат: (10)

Н

СН2ОН Н ‌

| ‌ СН2ОН С=О

С=О С=О | |

| | транскетолаза С=О Н–С–ОН

НО–С–Н + Н–С–ОН  | + |

| | НО–С–Н Н–С–ОН

Н–С–ОН СН2О Р | |

| 3-фосфоглицери- Н–С–ОН Н–С–ОН

Н–С–ОН новый альдегид | |

| СН2О Р СН2О Р

Н–С–ОН ксилулозо-5- рибозо-5-

| фосфат фосфат

СН2О Р

седогептулозо-7-

фосфат

В последующих реакциях цикла Кальвина осуществляется изомеризация фосфорнокислых производных пентоз, которая обеспечивает регенерацию первичного акцептора СО2 – рибулозо-1,5-дифосфата. Образовавшиеся в реакциях 7 и10 молекулы ксилулозо-5-фосфата превращаются в рибулозо-5-фосфат под действием фермента рибулозофосфатэпимеразы (5.1.3.1), который способен изменять на противоположную пространственную ориентацию водорода и гидроксильной группы у третьего углеродного атома пентозы:

СН2ОН СН2ОН (11)

| |

С=О  С=О

|  |

НО-С-Н Н-С-ОН

| |

Н-С-ОН Н-С-ОН

| |

СН2О Р СН2О Р

ксилулозо-5- рибулозо-5-фосфат

фосфат

П

Н (12)

С=О СН2ОН

| рибозофосфат- |

Н-С-ОН  С=О

|  |

Н-С-ОН изомераза Н-С-ОН

| |

Н-С-ОН Н-С-ОН

| |

СН2О Р СН2О Р

рибозо-5-фосфат рибулозо-5-фосфат

ревращение рибозо-5-фосфата в рибулозо-5-фосфат катализирует фермент рибозофосфатизомераза (5.3.1.6):

О

СН2ОН СН2О Р (13)

| |

С=О С=О

| фосфорибулокиназа |

Н-С-ОН + АТФ  Н-С-ОН + АДФ

| |

Н-С-ОН Н-С-ОН

| |

СН2О Р СН2О Р

рибулозо-5-фосфат рибулозо-1,5-дифосфат

кончательную регенерацию первичного акцептора СО2 осуществляет фермент фосфорибулокиназа (2.7.1.19), катализирующий фосфорилирование от АТФ рибулозо-5-фосфата:

В ходе указанных выше тринадцати реакций происходит включение в состав углеводных производных трёх молекул СО2 и потребление трёх молекул первичного акцептора рибулозо-1,5-дифосфата, при этом осуществляется синтез шести молекул 3-фосфоглицеринового альдегида, из которых пять затрачиваются на регенерацию трёх молекул рибулозо-1,5-дифосфата и одна молекула 3-фосфоглицеринового альдегида остаётся как продукт темновой стадии фотосинтеза. Её синтез сопряжён с использованием биоэнергетических продуктов световой стадии фотосинтеза АТФ и НАДФН.

Восстановленные динуклеотиды НАДФН участвуют в реакции 3 цикла Кальвина, которая в ходе синтеза 6 молекул 3-фосфоглицери-нового альдегида повторяется 6 раз и, следовательно, в этих реакциях потребляются 6 молекул восстановленных динуклеотидов НАДФН. АТФ участвует в реакции 2, которая, как и реакция 3, повторяется 6 раз, и в реакции 13, которая при синтезе 3 молекул первичного акцептора СО2 рибулозо-1,5-дифосфата повторяется 3 раза. Всего при связывании 3 молекул СО2 и восстановлении их до уровня 3-фосфоглицеринового альдегида потребляется 9 молекул АТФ.

Однако 3-фосфоглицериновый альдегид не накапливается в хлоропластах, он используется для синтеза гексозы. Часть молекул 3-фосфогли-церинового альдегида изомеризуется в фосфодиоксиацетон, который далее под действием альдолазы конденсируется с оставшимися молекулами 3-фосфоглицеринового альдегида и, таким образом, осуществляется синтез фруктозо-1,6-дифосфата. После гидролиза фруктозодифосфата с участием фруктозо-1,6-дифосфатазы образуется фруктозо-6-фосфат. Если учесть, что для синтеза фруктозо-6-фосфата потребуется связывание 6 молекул СО2 в первой реакции цикла Кальвина и все выше указанные превращения, связанные с синтезом одной молекулы 3-фосфоглицеринового альдегида, должны повториться еще раз, суммарное уравнение темновой стадии фотосинтеза может быть записано в следующем виде:

ферменты

6СО2 + 11Н2О + 18АТФ + 12НАДФН + 12Н+  фруктозо-6-фосфат

цикла Кальвина

+ 18АДФ + 12НАДФ+ + 17Н3РО4

В опытах с использованием СО2, меченного 14С, было показано, что в течение 1-3 минут после экспозиции растений в атмосфере 14СО2 все промежуточные продукты цикла Кальвина насыщаются меченым углеродом, а при более длительных экспозициях 14С обнаруживается уже в составе сахарозы, крахмала, органических кислот, аминокислот, липидов, белков и других органических веществ хлоропластов.

Следует отметить, что из всех реакций цикла Кальвина только первая и последняя (13) специфичны для фотосинтезирующих клеток, тогда как другие реакции могут протекать в любых других клетках и тканях фотосинтезирующих организмов в ходе синтеза, распада и превращений углеводов. При этом промежуточные метаболиты, образующиеся в цикле Кальвина, выводятся из этого цикла и потребляются для синтеза различных органических веществ в хлоропластах и листьях растений. Конечный продукт цикла Кальвина фруктозо-6-фосфат также включается в биосинтетические реакции, происходящие в фотосинтезирующих тканях, или превращается в транспортные формы, которые по сосудам флоэмы поступают в акцепторные органы растений.