
- •Многоцелевое сухогрузное судно.
- •2. Судно для перевозки наливных грузов.
- •3.Судно для перевозки накатной техники.
- •4. Судно для перевозки массовых грузов.
- •5. Пассажирское судно.
- •6. Главные размерения судна.
- •15. Классификация судов по эксплуатационному назначению
- •16.Классификация судов по району плавания
- •17. Классификация судов по материалу корпуса.
- •18. Классификация судов по положению относительно воды
- •19. Классификация судов по типу главного двигателя
- •20.Классификация судов по типу движетеля
- •21. Надводный борт судна.
- •22. Запас плавучести
- •23. Плавучесть. Условия равновесия судна.
- •24. Центр тяжести судна.
- •25. Центр величины судна.
- •26. Метацентрическая высота. Метацентрический радиус.
- •27. Остойчивость на малых углах крена.
- •28. Метацентрическая высота.
- •29. Что является важнейшей мерой остойчивости? Почему?
- •30. Остойчивость на больших углах крена.
- •31) Диаграмма статической остойчивости (рис.)
- •32) Диаграмма динамической остойчивости (рис.)
- •33) Грузовая марка (рис.)
- •34) Грузовая шкала (рис.)
- •35) Грузовой размер
- •41. Сопротивление среды движению судна.
- •42. Буксировочная мощность.
- •43. Пропульсивный коэффициент.
- •44. Номинальная мощность главного двигателя
- •45. Влияние волнения на скорость судна.
- •46. Цель проведения испытаний моделей судов в опытовом бассейне.
- •47. Цель проведения испытаний моделей судов в аэродинамической лаборатории.
- •48. Прочность судна (общая и местная).
- •49. Системы набора корпуса судна.
- •50. Область применения поперечной системы набора корпуса судна
- •51. Преимущества и недостатки продольной системы набора
- •52. Смешанная система набора перекрытий
- •53. Комбинированная система набора корпуса судна
- •54. Набор корпуса в районе двойного дна при поперечной системе набора
- •55. Набор корпуса в районе двойного дна при продольной системе набора
- •56. Набор палубы при поперечной системе набора
- •57. Набор палубы при продольной системе набора
- •58.Фальшборт-назначение и устройство
- •59. Комингсы люков – назначение и устройство
- •61. Что такое карлингс? (рис)
- •62.Шпангоут. Соединение его с флором (рис).
- •63. Бимсовая кница (рис)
- •64. Вертикальный и горизонтальный кили (рис).
- •65.Днищевые стрингеры, назначение.
- •66.Шистернек и палубный стрингер (рис)
- •72. Качка судна, виды качки
- •73. Период и амплитуда качки
- •74. Связь качки и остойчивости судна
- •75.Успокоители качки.
- •80. Механизм якорного устройства
- •81. Швартовное устройство
- •82. Конструкции борта
- •План формы
- •83. Назначение поперечных переборок
- •84. Грузовые устройства судна
- •85. Оснастка одиночной грузовой стрелы
- •86. Спаренная работы грузовых стрел
- •87. Расположение грузовых кранов на судне
- •88. Преимущества и недостатки грузовых кранов в сравнении с грузовыми стрелами
- •92. Постановка судна на швартовы
45. Влияние волнения на скорость судна.
Волнение моря оказывает наиболее существенное влияние на судно. Оно сопровождается действием на корпус значительных динамических нагрузок и качкой корабля. При плавании на волнении увеличивается сопротивление корпуса корабля и ухудшаются условия совместной работы винтов, корпуса и главных двигателей.
В результате снижается скорость, увеличивается нагрузка на главные машины, повышается расход топлива и уменьшается дальность плавания корабля. Форма и размеры волн характеризуются следующими элементами: высота волны, длина волны, период волны.
Различают три типа волнения: ветровое, зыбь и смешанное. Ветровое волнение — развивающееся, оно находится под непосредственным воздействием ветра в отличие от зыби, представляющей собой инерционное волнение, или волнение, вызванное штормовым ветром, дующим в удаленном районе.
46. Цель проведения испытаний моделей судов в опытовом бассейне.
Испытания моделей судов в опытовом бассейне проводятся с целью определения более точного определения остаточного сопротивления, которое состоит из волнового сопротивления и сопротивления формы. В этом случае в бассейн длиной от нескольких десятков до нескольких сот метров буксируют изготовленную из парафина модель корпуса судна с помощью специальной тележки и динамометром фиксируют силу сопротивления движению этой модели. Полученная величина представляет собой полное сопротивление воды движению модели.
Если из нее вычесть величину сопротивления трения модели, то получим остаточное сопротивление, которое может быть пересчитано с модели на натуральное судно. Прибавив к нему вычисленное расчетом сопротивление трения натурального судна, получим полное сопротивление.
Схема
опытового бассейна Схема бассейна
с тросом, перемещающимся
с самоходной тележкой под действием падающего груза.
47. Цель проведения испытаний моделей судов в аэродинамической лаборатории.
Воздушное сопротивление движению судна можно найти, испытывая модель надводной части судна в аэродинамической трубе. Модель судна помещают в рабочее пространство трубы и обдувают потоком воздуха, скорость которого может быть задана и измерена. Сопротивление модели измеряют с помощью аэродинамических весов.
Воздушное сопротивление необходимо для нахождения полного сопротивления среды движению судна.
Схема
аэродинамической трубы.
1-кампилятор, 2-направляющие лопасти, 3-труба,
4-решетки, 5-сетка, 6-сопло, 7-рабочее пространство,
8-испытаемая модель, 9-обратный канал.
48. Прочность судна (общая и местная).
Конструкции корпуса судна должны быть достаточно прочными и жесткими, т. е. способными выдержать действующие на корпус силы без разрушений и недопустимых деформаций.
Корпус судна испытывает нагрузку от собственной массы, массы перевозимого груза, запасов и давления воды.
Сила веса корпуса судна, его механизмов, оборудования, перевозимого груза и судовых запасов действует в месте расположения этих составляющих и направлены вертикально вниз.
Силы давления воды (силы поддержания) пропорциональны объему погруженной части судна в данном месте и действуют вертикально вверх. Суммарная нагрузка от действия этих сил вызывает общий продольный изгиб судна.
На судно также действуют давление забортной воды, сила инерции при качке, удары волн и т. д.
Общую прочность корпуса обеспечивают все продольные конструктивные связи, непрерывные на значительной длине (более 15% длины судна).
Местную прочность корпуса, главным образом при воздействии забортной воды и находящегося внутри корпуса груза и жидкого топлива, обеспечивают пластины днища, бортов, поперечных и продольных переборок, а также палуб (испытывающих давление палубного груза).
Для расчета прочности определяют действующие на корпус судна внешние силы, которые вызывают в конструкции напряжение и деформацию и сравнивают их с допускаемыми. Конструктивные размера прочности связей корпуса определяются в соответствии с правилами, указанных в судовых Регистрах.