
- •Структура модуля.
- •Знання та вміння, якими повинен володіти студент
- •1. Знання на рівні понять, означень, формулювань.
- •2. Уміння в розв’язанні задач.
- •Тема 1. Матриці та дії над ними.
- •Найпростіші дії з матрицями
- •Приклади розв’язання типових задач.
- •Самостійна робота №1
- •Тема 2. Визначник матриці. Властивості визначника.
- •Приклади розв’язання типових задач.
- •Вправи для аудиторної роботи.
- •Самостійна робота №2
- •Самостійна робота №3
- •Тема 3. Ранг матриці. Основні теоретичні відомості
- •Приклади розв’язання типових задач.
- •Індивідуальні завдання.
- •Тема 4. Обернена матриця.
- •Матричні рівняння.
- •Приклади розв’язання типових задач.
- •Вправи для аудиторної роботи.
- •Самостійна робота №4
- •Тема 5. Розв’язання систем лінійних алгебраїчних рівнянь.
- •Приклади розв’язання типових задач.
- •Вправи для аудиторної роботи.
- •Самостійна робота №5
- •Тема 6. Розв’язання систем лінійних алгебраїчних рівнянь матричним методом.
- •Приклади розв’язання типових задач.
- •Вправи для аудиторної роботи.
- •Самостійна робота №6
- •Тема 7. Розв’язання систем лінійних алгебраїчних рівнянь методом Гаусса. Основні теоретичні відомості
- •Приклади розв’язання типових задач.
- •Вправи для аудиторної роботи.
- •Самостійна робота №7
- •Структура модуля.
- •Знання та вміння, якими повинен володіти студент
- •1. Знання на рівні понять, означень, формулювань.
- •2. Уміння в розв’язанні задач.
- •Самостійна робота №8
- •Тема 1. Загальні поняття.
- •Тема 2. Координати вектора. Дії над векторами.
- •Приклади розв’язання типових задач.
- •Вправи для аудиторної роботи.
- •Тема 3. Скалярний добуток векторів.
- •Приклади розв’язання типових задач.
- •Вправи для аудиторної роботи.
- •Самостійна робота №9
- •Тема 4. Векторний добуток векторів. Основні теоретичні відомості
- •Приклади розв’язання типових задач.
- •Вправи для аудиторної роботи.
- •Самостійна робота №10
- •Структура модуля.
- •Знання та вміння, якими повинен володіти студент
- •1. Знання на рівні понять, означень, формулювань.
- •Самостійна робота №11
- •Тема 1. Пряма лінія.
- •Приклади розв’язання типових задач.
- •Вправи для аудиторної роботи.
- •Тема 2. Загальне рівняння прямої.
- •Канонічне рівняння прямої
- •Рівняння прямої, яка проходить через дві задані точки.
- •Векторне параметричне рівняння прямої
- •Параметричні рівняння прямої
- •Рівняння прямої у відрізках на осях.
- •Рівняння прямої з кутовим коефіцієнтом
- •Відстань від точки до прямої
- •Приклади розв’язання типових задач.
- •Вправи для аудиторної роботи.
- •Самостійна робота №12,13,14,15.
Приклади розв’язання типових задач.
1.
Вектори
і
утворюють кут
.
Знаючи, що
,
,
обчисліть: а)
;
б)
.
Розв'язання.
а)
Оскільки правильні рівності
,
,
то
;
б) скориставшись формулою (2) , дістанемо
.
2.
Дано вектори
і
.
Знайдіть:
а)
скалярний добуток
;
б) кут між векторами
та
.
Розв'язання.
а)
,
,
;
б)
,
,
,
звідси
.
3.
Дано вектори
,
,
.
Знайдіть вектор
,
який задовольняє рівності:
,
та
.
Розв'язання.
Нехай
,
тоді умова
рівносильна рівнянню
.
Аналогічно дістаємо ще два рівняння
та
.
Розв’язавши систему
дістанемо
значення :
,
,
.
Відповідь:
.
4.
Точки
,
,
- вершини трикутника АВС. Знайдіть кут
у трикутнику при вершині В і проекцію
вектора
на вектор
.
Розв'язання.
Знайдемо координати векторів
і
, що збігаються з відповідними сторонами
трикутника:
,
.
Косинус
кута
між векторами
і
знаходимо за формулою
,
звідки
.
Отже,
.
Проекцію
вектора
на вектор
знайдемо за формулою:
.
5.
Нехай точки
,
,
,
- послідовні вершини чотирикутника
АВСД. При якому значенні а
діагоналі чотирикутника взаємно
перпендикулярні?
Розв'язання. Утворимо вектори :
,
.
Діагоналі чотирикутника
будуть взаємно перпендикулярні тоді,
коли скалярний добуток
,
тобто
,
звідки дістанемо а=1,5.
Вправи для аудиторної роботи.
1.
Вектори
і
утворюють кут
.
Знаючи, що
,
,
обчисліть: а)
;
б)
.
2.
Дано вектори
і
.
Знайдіть:
а)
скалярний добуток
;
б)
кут між векторами
та
;
в)
проекцію вектора
на вектор
.
3.
Дано вектори
,
,
.
Знайдіть вектор
,
який задовольняє рівності:
,
та
.
Самостійна робота №9
9.1.
Дано точки
та
.
Знайдіть:
а)
координати, довжину, напрямні косинуси
та орт вектора
;
б)
координати точки М, якщо
;
в)
координати точки
,
якщо
1)
,
,
,
.
2)
,
,
,
.
3)
,
,
,
.
4)
,
,
,
.
5)
,
,
,
.
6)
,
,
,
.
7)
,
,
,
.
8)
,
,
,
.
9)
,
,
,
.
10)
,
,
,
.
11)
,
,
,
.
12)
,
,
,
.
13)
,
,
,
.
14)
,
,
,
.
15)
,
,
,
.
16)
,
,
,
.
17)
,
,
,
.
18)
,
,
,
.
19)
,
,
,
.
20)
,
,
,
.
21)
,
,
,
.
22)
,
,
,
.
23)
,
,
,
.
24)
,
,
,
.
25)
,
,
,
.
9.2.
Чи колінеарні вектори
і
,
побудовані на векторах
і
?
1)
,
,
,
.
2)
,
,
,
.
3)
,
,
,
.
4)
,
,
,
.
5)
,
,
,
.
6)
,
,
,
.
7)
,
,
,
.
8)
,
,
,
.
9)
,
,
,
.
10)
,
,
,
.
11)
,
,
,
.
12)
,
,
,
.
13)
,
,
,
.
14)
,
,
,
.
15)
,
,
,
.
16)
,
,
,
.
17)
,
,
,
.
18)
,
,
,
.
19)
,
,
,
.
20)
,
,
,
.
21),
,
,
.
22)
,
,
,
.
23)
,
,
,
.
24)
,
,
,
.
25)
,
,
,
.
9.3. Обчисліть:
1)
а)
;
б)
,
якщо
,
,
.
2)
а)
;
б)
,
якщо
,
,
.
3)
а)
;
б)
,
якщо
,
,
.
4)
а)
;
б)
,
якщо
,
,
.
5)
а)
;
б)
,
якщо
,
,
.
6)
а)
;
б)
,
якщо
,
,
.
7)
а)
;
б)
,
якщо
,
,
.
8)
а)
;
б)
,
якщо
,
,
.
9)
а)
;
б)
,
якщо
,
,
.
10)
а)
;
б)
,
якщо
,
,
.
11)
а)
;
б)
,
якщо
,
,
.
12)
а)
;
б)
,
якщо
,
,
.
13)
а)
;
б)
,
якщо
,
,
.
14)
а)
;
б)
,
якщо
,
,
.
15)
а)
;
б)
,
якщо
,
,
.
16)
а)
;
б)
,
якщо
,
,
.
17)
а)
;
б)
,
якщо
,
,
.
18)
а)
;
б)
,
якщо
,
,
.
19)
а)
;
б)
,
якщо
,
,
.
20)
а)
;
б)
,
якщо
,
,
.
21)
а)
;
б)
,
якщо
,
,
.
22)
а)
;
б)
,
якщо
,
,
.
23)
а)
;
б)
,
якщо
,
,
.
24)
а)
;
б)
,
якщо
,
,
.
25)
а)
;
б)
,
якщо
,
,
.
9.4.
Знайдіть скалярний добуток
, кут між векторами
і
та проекцію вектора
на вектор
,
якщо:
1)
,
,
,
.
2)
,
,
,
.
3)
,
,
,
.
4)
,
,
,
.
5)
,
,
,
.
6)
,
,
,
.
7)
,
,
,
.
8)
,
,
,
.
9)
,
,
,
.
10)
,
,
,
.
11)
,
,
,
.
12)
,
,
,
.
13)
,
,
,
.
14)
,
,
,
.
15)
,
,
,
.
16)
,
,
,
.
17)
,
,
,
.
18)
,
,
,
.
19)
,
,
,
.
20)
,
,
,
.
21)
,
,
,
.
22)
,
,
,
.
23)
,
,
,
.
24)
,
,
,
.
25)
,
,
,
.
9.5.
Знайдіть вектор
,
якщо:
1)
,
,
.
2)
,
,
.
3)
,
,
.
4)
,
,
.
5)
,
,
.
6)
,
,
.
7)
,
,
.
8)
,
,
.
9)
,
,
.
10)
,
,
.
11)
,
,
.
12)
,
,
.
13)
,
,
.
14)
,
,
.
15)
,
,
.
16)
,
,
.
17)
,
,
.
18)
,
,
.
19)
,
,
.
20)
,
,
.
21)
,
,
.
22)
,
,
.
23)
,
,
.
24)
,
,
.
25)
,
,
.
---------------------------------------------------------------------------------------------------