Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РГР1 CC.doc
Скачиваний:
6
Добавлен:
22.11.2018
Размер:
270.85 Кб
Скачать

Задания к расчетно-графической работе №1 «Системы счисления»

  1. Задания выполняются на отдельных листах или в тонкой тетради.

  2. Первый лист – титульный.

  3. Решение расписывается полностью.

Часть 1

Методические указания к выполнению

расчетно-графической работы

1. Системы счисления и арифметические операции в них

Совокупность приемов обозначения (записи) чисел называется системой счисления. Известны позиционные и непозиционные системы счисления.

В непозиционных системах счисления числовое значение символа не зависит от его местоположения в числе. Примером может служить римская.

В позиционных системах счисления каждая цифра или символ имеет свое определенное значение в зависимости от положения в числе и величина числа зависит не только от набора цифр, но и от того в какой последовательности записаны цифры.

Основание системы счисления – количество цифр, используемых для представления чисел в позиционной системе счисления.

Система счисления, использующая для своего образования 16 цифр: 0-9, A, B, C, D, E, F, называется шестнадцатеричной; использующая для своего образования 10 цифр от 0 до 9, называется десятичной системой счисления; использующая для своего образования 8 цифр (от 0 до 7) - восьмеричной; система счисления, в которой используются всего две цифры (0 и 1), называется двоичной системой счисления.

Для представления восьмеричных чисел достаточно трех двоичных разрядов. Такое описание называется триадным (запись по триадам). Для описания шестнадцатеричных чисел необходимо 4 двоичных разряда. Такая запись называется тетрадной (запись по тетрадам). Указанные записи используются при переводе чисел из двоичной системы счисления в шестнадцатеричную и восьмеричную систему счисления и обратно. В целой части числа группировка производится справа налево, в дробной части — слева направо. Если в последней группе недостает цифр, дописываются нули: в целой части — слева, в дробной — справа. Затем каждая группа заменяется соответствующей цифрой новой системы. Соответствия приведены в таблице 1.

Таблица 1

10 с/сч

16 с/сч

8 с/сч

2 с/сч

обычная запись

по триадам

по тетрадам

0

0

0

0

000

0000

1

1

1

1

001

0001

2

2

2

10

010

0010

3

3

3

11

011

0011

4

4

4

100

100

0100

5

5

5

101

101

0101

6

6

6

110

110

0110

7

7

7

111

111

0111

8

8

10

1000

001 000

1000

9

9

11

1001

001 001

1001

10

A

12

1010

001 010

1010

11

B

13

1011

001 011

1011

12

C

14

1100

001 100

1100

13

D

15

1101

001 101

1101

14

E

16

1110

001 110

1110

15

F

17

1111

001 111

1111

При переводе целого числа, представленного в десятичной системе счисления в шестнадцатеричную, восьмеричную или двоичную систему счисления, необходимо заданное число последовательно делить на основание 16, 8 или 2. Полученный от деления остаток будет младшим разрядом искомого 16, 8 или двоичного числа. Целая часть частного снова делится на 16, 8 или 2 и остаток будет следующим по старшинству разрядом и т.д. до тех пор, пока частное от деления не будет меньше основания (16, 8 или 2). Число читается снизу вверх. Такой способ перевода чисел называется правилом последовательного деления.

37 2

36 18 2 1001012

1 18 9 2

0 8 4 2

1 4 2 2

0 2 1

0

Для дробных чисел правило последовательного деления заменяется правилом последовательного умножения. Переводят отдельно целую и дробную части, затем второй результат приписывают к первому после запятой. При переводе дробной части числа из 10 системы счислении ее умножают на основание той системы, в которую переводят, выделяя при этом целые, образующие вначале старший, а затем младшие разряды искомого числа. Перевод осуществлен, когда во всех разрядах дробной части появятся нули или будет достигнута необходимая точность. Число читается сверху вниз.

Пример 1. Перевести данное число из десятичной системы счисления в двоичную (получить пять знаков после запятой в двоичном представлении).

а) 464(10); б) 380,1875(10); в) 115,94(10)

Решение

а) 464

0

б) 380

0

1875

в) 115

1

94

232

0

190

0

0

375

57

1

1

88

116

0

95

1

0

75

28

0

1

76

58

0

47

1

1

5

14

0

1

52

29

1

23

1

1

0

7

1

1

04

14

0

11

1

3

1

0

08

7

1

5

1

1

1

0

16

3

1

2

0

1

1

1

1

а)  464(10)=111010000(2); б) 380,1875(10) = 101111100,0011(2); в)  115,94(10)  1110011,11110(2)

(в данном случае было получено шесть знаков после запятой, после чего результат был округлен.)

Переведем из двоичной системы в шестнадцатеричную число 1111010101,11(2).

0011 1101 0101,1100(2) = 3D5,C(16).

Развернутая форма записи числа называется запись вида

Aq=an-1qn-1+ an-2qn-2+…+ a0q0+( a-1q-1+ a-2q-2+…+ a-mq-m)

целая часть дробная часть

Aq – само число; q – основание СС; ai – цифры данной СС.

Чтобы перевести число из 2-чной, 8-чной, 16-чной СС в 10-чную нужно представить это число в развернутой форме.

11011,112=1·24+1·23+0·22+1·21+1·20+1·2-1+1·2-2=16+8+0+2+1+0,5+0,25=27,7510

2E5,A16=2·162+14·161+5·160+10·16-1=741,62510

При переводе чисел из системы счисления с основанием P в десятичную систему счисления необходимо пронумеровать разряды целой части справа налево, начиная с нулевого, и дробной части, начиная с разряда сразу после запятой, слева направо (начальный номер –1). Затем вычислить сумму произведений соответствующих значений разрядов на основание системы счисления в степени, равной номеру разряда. Это и есть представление исходного числа в десятичной системе счисления.

Пример 2. Перевести данное число в десятичную систему счисления:

а) 1000001(2).

1000001(2) = 1  26 + 0  25 + 0  24 + 0  23 + 0  22 + 0  21 + 1  20 = 64 + 1 = 65(10).

Замечание. Если в каком-либо разряде стоит нуль, то соответствующее слагаемое можно опускать.

б) 1000011111,0101(2).

1000011111,0101(2) = 1  29 + 1  24 + 1  23 + 1  22 + 1  21 + 1  20 + 1  2–2 + 1  2–4 =

= 512 + 16 + 8 + 4 + 2 + 1 + 0,25 + 0,0625 = 543,3125(10).

в) 1216,04(8).

1216,04(8) = 1  83 + 2  82 + 1  81 + 6  80 + 4  8–2 = 512 + 128 + 8 + 6 + 0,0625 = 654,0625(10).

г) 29A,5(16).

29A,5(16) = 2  162 + 9  161 + 10  160 + 5  16–1 = 512 + 144 + 10 + 0,3125 = 656,3125(10).