Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсовая работа / курсовой.doc
Скачиваний:
68
Добавлен:
20.02.2014
Размер:
815.1 Кб
Скачать

2 Представление устройства в виде структурной схемы

Генератор постоянного тока представляется в виде структурной схемы (рисунок №7), т.е. последовательности блоков, представляющих собой системы с распределёнными (СРП) или сосредоточенными параметрами (ССП).

Uвх

∆U

∆Ф

∆E

Uвых

ССП

СРП

ССП

ССП

W1

W2

W3

W4

Рисунок №7 – Устройство ЭМП в виде функциональной схемы

W1 – переменный резистор;

W2 – обмотка возбуждения;

W3 – якорь генератора;

W4 – коллекторно-щёточный узел;

UBX – входное напряжение, подаваемое на статор генератора ;

ΔU – изменение напряжения под действием переменного резистора;

ΔФ – изменение магнитного потока;

ΔЕ – изменение электродвижущей силы в якоре, возникающей под воздействием магнитного поля при повороте вала двигателя ;

Uвых – выходное напряжение.

3 Основные понятия о срп

Основной характеристикой СРП является континуальная передаточная функция. Она показывает отношение выходной функции к входной (по Лапласу) в привязке к конкретной точке.

В искомой задаче выходная функция обозначается буквой Q(х,t), где x - трехмерная переменная в декартовых, полярных, цилиндрических или сферических координатах, f(x,t) - входная координата по среде, зависящая от трехмерной координаты х и времени t. Основное уравнение задачи записывается в виде:

l(Q(х,t)) = f(х,t), xD, t≥t0,

где l - оператор дифференциального уравнения - формула преобразования выходной величины Q.

В каждой задаче определяются граничные или краевые условия:

Г(Q(х,t))=g(х,t); xD, t>t0,

где Г - оператор граничных или краевых условий, g - входное воздействие на границе в каждый момент времени.

Для того чтобы решить задачу во всей области координат, необходимо знать ее значения в каждой точке по границе области.

Начальные условия для задачи записываются в виде

N(Q(х,t))= Q0(х); xD, t=t0,

где N - оператор начальных условий; Q0(х) - значение искомой функции в заданный момент времени.

Для того чтобы решить задачу во всей области координат, необходимо знать её значения в каждой точке пространства x. Получили систему:

l(Q(х,t)) = f(х,t), xD, t≥t0,

Г(Q(х,t))= g(х,t); xD, t>t0, (13)

N(Q(х,t))= Q0(х); xD, t=t0.

Необходимо знать:

1 Значение функции на границе в каждый момент времени

2 Значение в каждой точке области в момент времени t0.

Вуказанном виде (13) система практически не разрешима. Для ее решения вводится в рассмотрение стандартная форма записи (14). Она подразумевает нулевые граничные и начальные условия. Ее вид:

l(Q(х,t)) =ω(х,t), xD, t≥t0,

Г(Q(х,t))=0; xD, t>t0, (14)

N(Q(х,t))=0; xD, t=t0,

где ω(х,t) - стандартизующая функция ω(х,t)= f(х,t)

При Г=0, N=0 - входное воздействие на систему при нулевых граничных и начальных условиях и первая из трех основных функций, которая понадобится при решении (берется из справочника).

Второй функцией является функция Грина (импульсная переходная функция, функция влияния, функция источника, функция веса). Функцией Грина называется функция источника, которая равна выходному сигналу G(x,t) = Q(x,t) при f(х,t)= δ(х - ξ) δ(t - τ), где δ(х - ξ) - пространственная δ-функция по координатам x,y,z, δ(t - τ) - функция по времени; х - координаты входного возмущения; ξ- координаты точки отклика от удара.

Сучетом этого стандартная задача (2) перепишется в виде:

l(G(х,ξ,t,τ)) = δ(х - ξ) δ(t - τ),

Г(G(х, ξ,t,τ))=0; (15)

N(G(х, ξ,t,τ))=0;

где функция Грина от G(x,t) берется из справочника.

Зная эти две характеристики можно найти выходную функцию по следующему выражению:

(16)

Для управления и синтеза системы управления, исходя из ТАУ, необходимо знать передаточную функцию. В теории СРП вводится понятие континуальной передаточной функции, т.е. точечной передаточной функции в пределах области D, когда возмущение подается на среду в точке х, а реакция регистрируется в точке ξ.

Континуальная передаточная функция выражается следующим образом:

(17)

По сути, континуальная передаточная функция - это преобразование Лапласа функции Грина, т.е. при этих функциях континуальная передаточная функция является производной и всегда может определиться по функции Грина.

Таким образом, для решения задачи по CРII необходимо знать две функции: нормирующую функцию и функцию Грина

Теория СРП включает структурный метод ТАУ, который подразумевает операции с распределенными блоками: если блоки соединяются последовательно; если блоки соединяются параллельно; при включении второго блока в обратную связь. В связи с этим вводится понятие операторного изображения выходной величины. В теории распределенных блоков выходная величина определяется следующим образом:

, (18)

где - изображение по Лапласу выходной величины решаемой задачи;- континуальная передаточная функция; - изображение по Лапласу нормирующей функции.

Если удается из нормирующей функции выделить в явном виде компоненту входной координаты с помощью специальных средств или методов

, (19)

то уравнение (14) перепишется в виде:

, (20)

С помощью двух способов (коэффициент разложения и коэффициент приближения) по возможности выносится входное возмущение (по Лапласу) за знак интегрирования, получим:

(21)

Полученное выражение (21) - отношение изображения по Лапласу выходной величины к изображению по Лапласу входного возмущения, как интеграл по области D континуальных функций, называется интегральной передаточной функцией (функция Власова В.В.).

Соседние файлы в папке курсовая работа