Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции / 0093244_3A0F6_lekcii_modelirovanie_sistem.doc
Скачиваний:
155
Добавлен:
20.02.2014
Размер:
683.52 Кб
Скачать
    1. Основные свойства модели и моделирования

Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений ее подсистем и элементов, а не от ее физической природы.

Например, математические описания (модели) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. могут считаться одинаковыми с точки зрения их описания, хотя сами процессы различны.

Границы между моделями различного вида весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом и т.д.

Как правило модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С.

Модель можно представить формально в виде: М = < O, Z, A, B, C >.

Основные свойства любой модели:

  • целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;

  • конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

  • упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;

  • приблизительность - действительность отображается моделью грубо или приблизительно;

  • адекватность - модель должна успешно описывать моделируемую систему;

  • наглядность, обозримость основных ее свойств и отношений;

  • доступность и технологичность для исследования или воспроизведения;

  • информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получить новую информацию;

  • сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);

  • полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;

  • устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;

  • целостность - модель реализует некоторую систему, т.е. целое;

  • замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;

  • адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;

  • управляемость - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;

  • возможность развития моделей (предыдущего уровня).

Жизненный цикл моделируемой системы:

  • сбор информации об объекте, выдвижение гипотез, предварительный модельный анализ;

  • проектирование структуры и состава моделей (подмоделей);

  • построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей;

  • исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;

  • исследование адекватности, устойчивости, чувствительности модели;

  • оценка средств моделирования (затраченных ресурсов);

  • интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;

  • генерация отчетов и проектных (народно-хозяйственных) решений;

  • уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования.