Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции / Лекции моделирование.doc
Скачиваний:
252
Добавлен:
20.02.2014
Размер:
1.2 Mб
Скачать
  1. Основные понятия моделирования

Моделирование – процесс замещения объектной сферы некоторой моделью и приведения исследований на модели с целью получения информации об объекте.

Модель – физический или абстрактный образ моделируемого объекта, удобный для проведения исследований и позволяющий адекватно изображать физические свойства и характеристики объекта. Различают моделирование предметное и абстрактное.

При предметном моделировании строят физическую модель, которая при этом может иметь иную физическую природу. Например, электронная модель гидравлической системы. Недостаток: большие временные и материальные затраты.

Абстрактное моделирование связано с построением модели, которая может быть описана математическими соотношениями, графами, схемами и т.д.

Наиболее мощный метод абстрактного моделирования является математическое моделирование.

Математическое моделирование позволяет с помощью математических символов и зависимости составить описание функционирования объекта в окружающей внешней среде, определить выходные параметры и характеристики, получить оценку показателей эффективности и качества, осуществить поиск оптимальной структуры и параметров объекта.

Математическая модель – совокупность математических объектов и отношений между ними адекватно отображающие физические свойства объекта.

2. Классификация математических моделей

При проектировании технических объектов используют различные виды математических моделей, в зависимости от уровня иерархии степени декомпозиции системы, стадии и этапа проектирования. На любом уровне иерархии объект представляют в виде совокупности отдельных элементов. В связи с этим различают математические модели элементов и систем . при переходе к более высокому иерархическому уровню системы низшего уровня становятся элементом нового уровня и наоборот. Обычно чем ниже уровень иерархии, тем более детальнее описание физических свойств объекта и следовательно более сложные математические модели.

Различают три иерархических уровня:

  1. Верхний (метауровень) соответствует начальным стадиям проектирования. Для построения математической модели метауровня используют методы математической логики, теорию графов, теория автоматического управления.

  2. Средний (макроуровень). Объект рассматривают как динамическую систему с сосредоточенными параметрами. Математические модели макроуровня представляют собой системы обыкновенное дифференциальное уравнение (ОДУ).

  3. Нижний (микроуровень). Объект представляется как сплошная среда с распределенными параметрами. Для описания процесса функционирования таких объектов используют дифференциальное уравнение в частных производных (ДУЧП). На микроуровне исследуют неделимые по функциональному признаку элементы технической системы, называемыми базовыми элементами (Например, вал, мембрана, стержни и т.д.).

На всех видах иерархических уровнях используют следующие виды математической модели:

  • Динамические статические математические модели. Если при моделировании учитываются инерционные свойства объекта и/или изменение во времени параметров объекта или внешней среды, то модель динамическая. Иначе модель – статическая. Статическая модель может быть выражена системой алгебраических уравнений. Динамическая модель может быть выражена системой дифференциальных, интегральных уравнений, передаточными функциями.

  • Линейная или нелинейная математическая модель. Линейные модели содержат только линейные функции фазовых переменных и их производных. Фазовая переменная (фазовая координата) – величина, характеризующая состояние объекта в процессе его функционирования (скорости и сила. Расхода и давления и т.д.). Нелинейная математическая модель включает нелинейные функции.

  • Функциональная и структурная математическая модель. Структурные модели отображают только структуру объекта и имеют форму таблиц, матриц и графов. Функциональные модели учитывают и структурные, и функциональные свойства объекта. Имеют форму систем уравнений.

  • Теоретические и экспериментальные математические модели. Теоретические модели получают по основе описания физических процессов функционирования объекта, а экспериментальные модели – на основе изучения поведения объекта во внешней среде, рассматривая его как «черный ящик». При построении теоретических моделей используют физический подход, который сводиться к непосредственному применению физических законов, и формальный подход, который используют общие математические принципы.

  • Вероятностные и детерминированные математические модели (стохастические). Вероятностные математические модели учитывают случайный характер воздействия внешней среды, случайный разброс параметров элементов объекта, обусловленный технологическими процессом изготовления. Детерминированные математические модели характеризуются взаимнооднозначным соответствием между внешним воздействием на динамическую систему и ее реакцией на это воздействие.

Соседние файлы в папке лекции