Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции / 0080595_C604F_lekcii_modeli_i_metody_apr.doc
Скачиваний:
475
Добавлен:
20.02.2014
Размер:
10.45 Mб
Скачать

Постановка задачи анализа объектов с сосредоточенными параметрами.

Использование ММ объекта в виде системы дифференциальных уравнений в частных производных можно только для очень простых технических систем, и даже в этом случае порядок аппроксимирующей алгебраической системы уравнений при моделировании в трехмерном пространстве может достигать 106 и более. Поэтому при моделировании на макроуровне в технической системе выделяются достаточно крупные элементы, которые в дальнейшем рассматриваются в виде неделимой единицы. Непрерывной независимой переменной остается (в сравнении с моделированием на микроуровне) только время. Математической моделью технической системы на макроуровне будет система ОДУ.

Поведение большинства технических подсистем; можно охарактеризовать с помощью фазовых переменных. Фазовые переменные образуют вектор неизвестных в ММ технической системы. В электрической подсистеме фазовыми переменными являются токи и напряжения, в механической поступательной подсистеме – силы и скорости.

Математическую модель системы получают объединением компонентных и топологических уравнений.

Законы функционирования элемента подсистемы (элемента) задаются компонентными уравнениями, связывающими, как правило, разнородные фазовые переменные, относящиеся к данному элементу, т. е. компонентные уравнения связывают переменные типа потока с переменными типа потенциала.

Компонентные уравнения могут быть линейными или нелинейными, алгебраическими, обыкновенными дифференциальными или интегральными. Эти уравнения получаются на основе знаний о конкретной предметной области. Для каждого элемента моделируемого технического объекта должны быть получены компонентные уравнения. Это может оказаться длительной и трудоемкой процедурой, выполняющейся однократно с одновременным накоплением библиотеки подпрограмм моделей элементов.

Примечание. Для большинства элементов такие компонентные уравнения уже получены в прикладных дисциплинах. Ими можно воспользоваться при моделировании в САПР. Например, в гидравлике для дросселя имеется аналитическое выражение, связывающее расход и давление (это компонентное уравнение дросселя).

Компонентные уравнения получают либо теоретически, либо физическим макетированием, либо математическим моделированием на микроуровне.

Связь между однородными фазовыми переменными, относящимися к разным элементам подсистемы, задается топологическими уравнениями, получаемыми на основе сведений о структуре подсистемы. Для формирования тологических уравнений разработаны формальные методы и процедура получения топологических уравнений выполняется для каждого моделируемого объекта, так как структуры объектов различны.

В САПР целесообразно использовать математические программные средства, обеспечивающие моделирование всей номенклатуры проектируемых объектов и способные адаптироваться к изменяющимся условиям эксплуатации. Эти свойства достигаются, если применяемые средства имеют высокую степень универсальности. Получению универсальных средств способствует использование аналогий между подсистемами различной физической природы и между моделирующими их компонентами и топологическими уравнениями.