Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоргалка / ИМЭП / Ответы на вопросы.doc
Скачиваний:
303
Добавлен:
20.02.2014
Размер:
1.54 Mб
Скачать

15.Особенности моделирования систем при помощи численных методов. Примеры.

Численное модел-е использует методы вычислит-й матем-ки и позволяет получить лишь приближенные решения. Круг задач, решаемых численными методами, значительно шире по сравнению с аналит-ми методами. Вместе с тем, решение задачи бывает менее полным, чем в аналитическом моделировании, Иногда оно сводится к небольшому числу частных случаев. К сожалению, модели сложных систем не всегда можно привести к виду, допускающему численное решение, или это оказывается весьма сложным. Недостаток численного моделирования заключается в том, что роль компьютера сводится лишь к автоматической реализации выбранного численного метода. Моделирующий алгоритм в большей степени отражает именно численный метод, чем особенности модели. Поэтому при смене численного метода приходится заново перерабатывать алгоритм моделирования.

Имеется система, состоящая из трех блоков.

Система функционирует нормально, если исправен хотя бы один из блоков 1 и 2, а также исправен блок 3. Известны функции распределения времени безотказной работы блоков f1(t),f2(t),f3(t). Требуется найти вероятность безотказной работы системы в момент времени t.

Эквивалентная логическая схема

означает, что отказ системы наступает при обрыве цепи. Это имеет место в следующих случаях:

отказали блоки 1 и 2, исправен блок 3;

отказал блок 3, исправен хотя бы один из блоков 1 и 2.

Вероятность безотказной работы системы P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) =

Эта формула и есть основа математической модели системы.

Численное моделирование. Необходимость в нем может возникнуть, например, тогда, когда установлено, что интегралы не определяются (т.е. выражены не ч/з элементарные функции). Необходимость в нем может возникнуть, например, тогда, когда установлено, что распределения f1(t),f2(t),f3(t) подчиняются закону Гаусса (нормальному):.Для вычислений по формуле P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) = при каждом значении t они должны определяться численно, например, по методу трапеций, Симпсона, Гаусса или другими методами. Для каждого значения t вычисления проводятся заново.

метод прямоугольников, метод трапеций, метод параболы. При методе прямоуг возникает ошибка – неточность вычислений. Но можно разделить на 2 и более интервалов. Появляется множество интегралов, но здесь уже возникает ошибка округления.

метод Гаусса

метод Монте-Карло

16.Примеры использования различных видов моделирования системы.

Рассмотрим пример, характеризующий различие рассмотренных видов моделирования.

Имеется система, состоящая из трех блоков.

Система функционирует нормально, если исправен хотя бы один из блоков 1 и 2, а также исправен блок 3. Известны функции распределения времени безотказной работы блоков f1(t),f2(t),f3(t). Требуется найти вероятность безотказной работы системы в момент времени t.

Эквивалентная логическая схема

означает, что отказ системы наступает при обрыве цепи. Это имеет место в следующих случаях:

отказали блоки 1 и 2, исправен блок 3;

отказал блок 3, исправен хотя бы один из блоков 1 и 2.

Вероятность безотказной работы системы P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) =

Эта формула и есть основа математической модели системы.

Аналитическое моделирование. Оно возможно лишь при условии, что все интегралы выражаются через элементарные функции. Допустим, что

.

Тогда ==.

С учетом этого модель (1) принимает вид

.

Это и есть явное аналитическое выражение относительно искомой вероятности; оно справедливо лишь при сделанных допущениях.

Численное моделирование. Необходимость в нем может возникнуть, например, тогда, когда установлено, что интегралы не определяются (т.е. выражены не ч/з элементарные функции). Необходимость в нем может возникнуть, например, тогда, когда установлено, что распределения f1(t),f2(t),f3(t) подчиняются закону Гаусса (нормальному):.Для вычислений по формуле P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) = при каждом значении t они должны определяться численно, например, по методу трапеций, Симпсона, Гаусса или другими методами. Для каждого значения t вычисления проводятся заново.

метод прямоугольников, метод трапеций, метод параболы. При методе прямоуг возникает ошибка – неточность вычислений. Но можно разделить на 2 и более интервалов. Появляется множество интегралов, но здесь уже возникает ошибка округления.

метод Гаусса

метод Монте-Карло

Имитационное моделирование. Имитация есть воспроизведение событий, происходящих в системе, т.е. исправной работы либо отказа rаждого элемента. Если время работы системы t, а ti -  время безотказной работы элемента с номером i, то: событие ti>t означает исправную работу элемента за время (0; t];

событие ti<=t означает отказ элемента к моменту t.

Заметим, что ti - случайная величина, распределенная по закону fi(t), который известен по условию.

Моделирование случайного события «исправная работа k –го элемента за время (0; t]» заключается:

1)в получении случайного числа ti, распределенного по закону fi(t);

2)в проверке истинности логического выражения ti>t. Если оно истинно, то i-й элемент исправен, если ложно – он отказал.

Алгоритм моделирования таков:

1.Положить n=0, k=0. Здесь n –  счетчик числа реализаций (повторений) случайного процесса; k – счетчик числа «успехов».

2.Получить три случайных числа t1,t2,t3, распределенных соответственно по законам f1(t),f2(t),f3(t).

3.Проверить истинность логического выражения L=[(t1>t)∩ (t2>t)∩ (t3>t)] v [(t1>t)∩ (t2<=t)∩ (t3>t)] v [(t1<=t)∩ (t2>t)∩ (t3>t)]

Если L=true, то положить k=k+1 и перейти к шагу 4, иначе перейти к шагу 4.

4.Положить n=n+1.

5.Если n<=N, перейти к шагу 2; иначе вычислить и вывести P(t)=k/N. Здесь N - число реализация случайного процесса; от него зависят точность и достоверность результатов моделирования.

6.Стоп.

Еще раз подчеркнем: Значение N задают заранее по соображениям обеспечения заданной точности о достоверности статистической оценки искомой величины P(t).

Соседние файлы в папке ИМЭП