Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоргалка / ИМЭП / Ответы на вопросы.doc
Скачиваний:
294
Добавлен:
20.02.2014
Размер:
1.54 Mб
Скачать

11.Виды математического моделирования. Примеры

Математическое моделирование – процесс установления соответствия реальной системе S мат модели M и исследование этой модели, позволяющее получить хар-ки реальной системы. Применение мат модел-ния позволяет иссл-ть объекты, реальные эксперименты над которыми затруднены или невозможны.

EMBED PBrush

Аналит-е моделирование - процессы функц-ия элем-в записываются в виде мат-х соотношений (алгебр-х, интегральных, диффер-х, логич-х и т.д.). Мат. модель может вообще не содержать в явном виде искомых величин. Ее необходимо преобразовать в систему соотношений относ-но искомых величин, допускающую получение нужного результата чисто анал-ми методами. Под этим понимается получения явных формул вида

<искомая величина> =<аналитическое выражение>, либо получение урав-й известного вида, решение которых также известно. В некоторых случаях возможно качественное исследование модели, при котором в явном виде можно найти лишь некоторые свойства решения.

Численное мод-е использует методы вычис-й матем-ки и позволяет получить лишь приближенные решения. Решение задачи бывает менее полным, чем в анал-м мод-и. Принципиальный недостаток численного мод-я закл-ся в автом-й реализации выбранного численного метода. Моделирующий алгоритм в большей степени отражает именно численный метод, чем особенности модели. Поэтому при смене численного метода приходится заново перерабатывать алгоритм моделирования.

Имит-е мод-ие - воспроизведение на ЭВМ (имитация) процесса функц-я исследуемой системы с соблюдением логической и временной послед-ти реальных событий. Для имит- мод-я характерно воспроизведение событий, происходящих в системе (описываемых моделью) с сохр их логической структуры и временной последовательности. Оно позволяет узнать данные о состоянии системы или отдельных ее элементов в опред-е моменты времени. Имитационное моделирование аналогично экспериментальному исследованию процессов на реальном объекте, т.е. на натуре.

12.Получение случайных чисел с произвольным законом распределения методом обратных функций. М-д обр ф-ий наиболее общий и универсальный способ получения чисел, подчиненных заданному закону. Стандартный метод моделирования основан на том, что интегральная функция распределения любой непрерывной случайной величины равномерно распределена в интервале (0;1), т.е. для любой случайной величины X с плотностью распределения f(x) случайная величина равномерно распределена на интервале (0;1).

Тогда случайную величину X с произвольной плотностью распределения f(x) можно рассчитать по следующему алгоритму:1. Необходимо сгенерировать случайную величину r (значение случайной величины R), равномерно распределенную в интервале (0;1). 2. Приравнять сгенерированное случайное число известной функции распределения F(X) и получить уравнение . 3. Решая уравнение X=F-1(r), находим искомое значение X

Графическое решение

.

Дополнительно к вопросу 11.

Рассмотрим пример, характеризующий различие рассмотренных видов моделирования.

Имеется система, состоящая из трех блоков.

Система функционирует нормально, если исправен хотя бы один из блоков 1 и 2, а также исправен блок 3. Известны функции распределения времени безотказной работы блоков f1(t),f2(t),f3(t). Требуется найти вероятность безотказной работы системы в момент времени t.

Эквивалентная логическая схема

означает, что отказ системы наступает при обрыве цепи. Это имеет место в следующих случаях:

отказали блоки 1 и 2, исправен блок 3;

отказал блок 3, исправен хотя бы один из блоков 1 и 2.

Вероятность безотказной работы системы P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) =

Эта формула и есть основа математической модели системы.

Аналитическое моделирование. Оно возможно лишь при условии, что все интегралы выражаются через элементарные функции. Допустим, что

.

Тогда ==.

С учетом этого модель (1) принимает вид

.

Это и есть явное аналитическое выражение относительно искомой вероятности; оно справедливо лишь при сделанных допущениях.

Численное моделирование. Необходимость в нем может возникнуть, например, тогда, когда установлено, что интегралы не определяются (т.е. выражены не ч/з элементарные функции). Необходимость в нем может возникнуть, например, тогда, когда установлено, что распределения f1(t),f2(t),f3(t) подчиняются закону Гаусса (нормальному):.Для вычислений по формуле P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) = при каждом значении t они должны определяться численно, например, по методу трапеций, Симпсона, Гаусса или другими методами. Для каждого значения t вычисления проводятся заново.

метод прямоугольников, метод трапеций, метод параболы. При методе прямоуг возникает ошибка – неточность вычислений. Но можно разделить на 2 и более интервалов. Появляется множество интегралов, но здесь уже возникает ошибка округления.

метод Гаусса

метод Монте-Карло

Имитационное моделирование. Имитация есть воспроизведение событий, происходящих в системе, т.е. исправной работы либо отказа rаждого элемента. Если время работы системы t, а ti -  время безотказной работы элемента с номером i, то: событие ti>t означает исправную работу элемента за время (0; t];

событие ti<=t означает отказ элемента к моменту t.

Заметим, что ti - случайная величина, распределенная по закону fi(t), который известен по условию.

Моделирование случайного события «исправная работа k –го элемента за время (0; t]» заключается:

1)в получении случайного числа ti, распределенного по закону fi(t);

2)в проверке истинности логического выражения ti>t. Если оно истинно, то i-й элемент исправен, если ложно – он отказал.

Алгоритм моделирования таков:

1.Положить n=0, k=0. Здесь n –  счетчик числа реализаций (повторений) случайного процесса; k – счетчик числа «успехов».

2.Получить три случайных числа t1,t2,t3, распределенных соответственно по законам f1(t),f2(t),f3(t).

3.Проверить истинность логического выражения L=[(t1>t)∩ (t2>t)∩ (t3>t)] v [(t1>t)∩ (t2<=t)∩ (t3>t)] v [(t1<=t)∩ (t2>t)∩ (t3>t)]

Если L=true, то положить k=k+1 и перейти к шагу 4, иначе перейти к шагу 4.

4.Положить n=n+1.

5.Если n<=N, перейти к шагу 2; иначе вычислить и вывести P(t)=k/N. Здесь N - число реализация случайного процесса; от него зависят точность и достоверность результатов моделирования.

6.Стоп.

Еще раз подчеркнем: Значение N задают заранее по соображениям обеспечения заданной точности о достоверности статистической оценки искомой величины P(t).

Соседние файлы в папке ИМЭП