Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоргалка / 0527273_F0604_shpargalki_kompyuternoe_modelirovaie.docx
Скачиваний:
178
Добавлен:
20.02.2014
Размер:
1.22 Mб
Скачать

7.Математические модели.

Основные этапы построения математической модели:

  1. составляется описание функционирования системы в целом;

  2. составляется перечень подсистем и элементов с описанием их функционирования, характеристик и начальных условий, а также взаимодействия между собой;

  3. определяется перечень воздействующих на систему внешних факторов и их характеристик;

  4. выбираются показатели эффективности системы, т.е. такие числовые характеристики системы, которые определяют степень соответствия системы ее назначению;

  5. составляется формальная математическая модель системы;

  6. составляется машинная математическая модель, пригодная для исследования системы на ЭВМ.

Требования к математической модели:

Требования определяются прежде всего ее назначением, т.е. характером поставленной задачи:

"Хорошая" модель должна быть:

  1. целенаправленной;

  2. простой и понятной пользователю;

  3. достаточной с точки зрения возможностей решения поставленной задачи;

  4. удобной в обращении и управлении;

  5. надежной в смысле защиты от абсурдных ответов;

  6. допускающей постепенные изменения в том смысле, что, будучи вначале простой, она при взаимодействии с пользователями может становиться более сложной.

Математические модели. Математические модели представляют собой формализованное представление системы с помощью абстрактного языка, с помощью математических соотношений, отражающих процесс функционирования системы. Для составления математических моделей можно использовать любые математические средства — алгебраическое, дифференциальное, интегральное исчисления, теорию множеств, теорию алгоритмов и т.д. По существу вся математика создана для составления и исследования моделей объектов и процессов.

К средствам абстрактного описания систем относятся также языки химических формул, схем, чертежей, карт, диаграмм и т.п. Выбор вида модели определяется особенностями изучаемой системы и целями моделирования, т.к. исследование модели позволяет получить ответы на определённую группу вопросов. Для получения другой информации может потребоваться модель другого вида. Математические модели можно классифицировать как детерминированные и вероятностные, аналитические, численные и имитационные.

Детерминирован­ное моделирование отображает процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероят­ностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характе­ристики, т. е. набор однородных реализаций.

Аналитической моделью называется такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат.

Численная модель характеризуется зависимостью такого вида, который допускает только частные решения для конкретных начальных условий и количественных параметров моделей.

Имитационная модель — это совокупность описания системы и внешних воздействий, алгоритмов функционирования системы или правил изменения состояния системы под влиянием внешних и внутренних возмущений. Эти алгоритмы и правила не дают возможности использования имеющихся математических методов аналитического и численного решения, но позволяют имитировать процесс функционирования системы и производить вычисления интересующих характеристик. Имитационные модели могут быть созданы для гораздо более широкого класса объектов и процессов, чем аналитические и численные. Поскольку для реализации имитационных моделей служат ВС, средствами формализованного описания ИМ служат универсальные и специальные алгоритмические языки. ИМ в наибольшей степени подходят для исследования ВС на системном уровне.

8. Структура модели. Моделирование - это воспроизведение хар-стик одного объекта на некот другом объекте, спец-но созданного для их изучения. Последний называется моделью.

Под структурой модели (и физической в том числе) понимают совок-ть эл-в, входящих в модель и связей между ними. При этом, модель (её элементы) может иметь ту же или иную физическую природу. Близость структур – одно из главных особенностей при моделировании. В каждом конкретном сл-е модель может выполнить свою роль тогда, когда степень ее соотв-я объекту опр-на достаточно строго. Упрощение структуры модели снижает точность.