- •Общие вопросы моделирования
- •Классический подход
- •Системный подход
- •Классификация видов моделирования по зависимости переменных пространственных координат и принцип построения
- •Классификация видов моделирования по зависимости параметров от переменной u и по приспособляемости модели
- •Математические схемы моделирования Основные подходы к построению математической модели системы
- •Общий закон функционирования системы в статических и динамических режимах. Экзогенные и эндогенные переменные
- •И уравнение выхода как функции состояния системы
- •Непрерывно детерминированные модели (d-схемы)
- •Примеры d-схемы: маятник и контур
- •Получение передаточной функции из дифференциального уравнения
- •Модель механической системы с линейным перемещением
- •Дискретно детерминированные системы (f-схемы)
- •F-схемы. Способы задания автоматов
- •Дискретно стохастические модели (р-схемы)
- •Непрерывно стохастические модели (q-схемы)
- •Сетевые модели (n-схемы)
- •19.Основные понятия срп
- •Основные особенности срп
- •20.Базовая функция объектов с распределенными параметрами
- •21. Уравнения гиперболического типа
- •22. Уравнение параболического типа
- •Уравнение теплопроводности (уравнение Фурье)
- •Уравнения эклектического типа
- •23. Общая характеристика условия однозначности Начальные условия
- •Граничные условия
- •24. Импульсные переходные функции и основные соотношения вход-выход
- •25. Функция Грина
- •26. Стандартные формы и стандартизирующие функции
- •27. Передаточная функция объектов с распределенными параметрами
- •28. Параллельное соединение распределения блоков
- •29. Последовательное соединение распределенных блоков
- •30. Задача нагрева тела в распределенных параметрах и ее общее решение
- •31. Задача нахождения стандартизирующей функции в случае нагрева пластины
- •32. Переходный х-блок с сосредоточенным внутренним управлением.
- •33. Переходный х-блок с сосредоточенным граничным управлением в условиях первой краевой задачи.
- •34. Типовые распределенные блоки
- •Переходный х-блок
- •36. Континуальная и интегральная передаточная функция
21. Уравнения гиперболического типа
Уравнения содержат две производные функции состояния, как по t, так и по x, они описывают колебательные процессы различной природы (механические, электромагнитные, звуковые и т.д.), связанные с конечной скоростью V, распространения волновых явлений.
1)
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
(5)
Уравнение (5)
моделирует распространение свободных
колебаний (при распространении со
скоростью звука
пульсации расхода газа в длинном
трубопроводе).
При
,
уравнение (5) записывается в виде:
![]()
![]()
- описывает
вынужденные
колебания под влиянием
внешнего
воздействия
.
2) Уравнение гиперболического типа:
![]()
![]()
![]()
![]()
![]()
(7)
Описывает распределение напряжения тока вдоль длинной электрической линии.
- скорость
распределения электромагнитных волн
вдоль линии.
При
уравнение (7) сводится к волновому
уравнению, при
и
уравнение (7) моделирует процессы
механических колебаний в среде
сопротивления.
22. Уравнение параболического типа
Они содержат первую
производную
и вторую производную по координатеt.
Описывает задачи, связанные с процессами теплопроводности, диффузии с распространением электромагнитных волн, с движением вязкой жидкости и т.д.
Уравнение теплопроводности (уравнение Фурье)
![]()
![]()
![]()
(8)
Уравнение (8) – однородное уравнение теплопроводности, описывает температурные поля не стационарной теплопроводности, тепло массы перевода и т.д.
![]()
![]()
(9)
Уравнение (9) – неоднородное уравнение теплопроводности, учитывающее внешнее воздействие от внутренних источников вещества и энергии.
Включив в правой
части уравнений (8) и (9) дополнительный
член
,
получим уравнение теплопроводности в
цилиндрической системе пространственных
координат.
Уравнения эклектического типа
В уравнениях этого
типа отсутствует производная от
по времени
t
и описывают стохастическое состояние
ОРП.
1) Гельмгольца
![]()
(10)
2) Пуассона
![]()
(11)
при
в уравнении (10)
3) Лапласа (эллиптического типа)
При
![]()
![]()
(12)
Уравнения (11) и (12) моделируют в распространении температуры потенциала скоростей при стационарном течении несжимаемой жидкости потенциал электрического поля в задачах электрической статики и т.д. при отсутствии или наличии внешних воздействий соответственно.
Уравнение (10) описывает многие физические процессы теплопроводности, диффузии в движущихся средах, напряженности поля и т.д.
Замечание:
В общем случае описание функции не сводится к перечисленным уравнениям так как:
- оператор L может быть нелинейным;
- уравнения могут быть многополярными (в двух или трех мерных пространственных координатах);
- порядок уравнения может быть больше второго;
- поведение СРП может моделироваться не одним, а системой уравнений в частных производных, т.е. описываться векторным уравнением.
