Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоргалка / 0217374_99E45_otvety_po_kompyuternomu_modelirovaniyu.doc
Скачиваний:
214
Добавлен:
20.02.2014
Размер:
327.68 Кб
Скачать

13.Классификационные модели.

Классификационные моделиявляются основополагающими, исходными формами знаний. В науке познание начинается с соотнесения познаваемого объекта с другими, выявления сходствами различия между ними. Поэтому протокол наблюдений на классификационном уровне эксперимента содержит результаты измерения ряда признаков. Признак характеризует конкретное свойство объекта.

Модели, с помощью которых осуществляется прогнозирование класса объекта, будем называть классификационными.

Примеры классификационных моделей - модели на основе деревьев решений, а также байесовский метод. При помощи классификационной модели решаются следующие задачи:

- принадлежит ли новый клиент к одному из набора существующих классов;

- подходит ли пациенту определенный курс лечения;

- выявление групп ненадежных клиентов;

- определение групп клиентов, которым следует рассылать каталог с новой продукцией.

Деревья решений и простые байесовы модели — два самых популярных типа классификационных моделей.

14. Динамические модели. Модель динамики популяции. Динамические модели

В отличие от статических, независимых от времени, моделей динамические модели описывают экономические или управленческие процессы или системы в движении, то есть, в зависимости от временных периодов, что были или будут. Динамические модели позволяют прогнозировать развития процесса на будущие, чтобы  уже сейчас иметь представление о его результатах и соответствующим образом реагировать на определенные следствие этого развития.

Динамическое моделирование– многошаговый процесс, каждый шаг соответствует поведению экономической системы у определенный временный период. Каждый поточный шаг получает результаты предыдущего шага, за определенными правилами определяет текущий результат и формирует данные для следующего шага.

Таким образом, динамическая модель в ускоренном режиме позволяет исследовать развития сложной экономической системы, скажем, предприятия, на протяжении определенного периода планирования в условиях изменения ресурсного обеспечения (сырья, кадров, финансов, техники), и получение результаты представить у соответствующему плане развития предприятия на заданный период.

Динамические системы, в отличие от статических, помнят свое прошлое состояние, то есть обладают памятью. Поэтому в записи модели динамических систем присутствует производная, связывающая прошлое состояние системы с настоящим. Чем большей памятью обладает система, тем больше состояний из прошлого влияют на настоящее, тем большая степень старшей производной используется в записи модели.

Задача 1. На входе и выходе черного ящика (рис. 2.1) имеются зависимости параметров X и Y от времени t. Задача состоит в том, чтобы адекватно определить черный ящик.

Рис. 2.1. Черный ящик, содержащий динамическую систему. Условное обозначение

Графики зависимостей X(t) и Y(t) могут быть самыми разными, например, такими, как показано на рис. 2.2.

Рис. 2.2. Временные зависимости — входной и выходной сигналы

Поскольку моделирование систем подразумевает численные расчеты на компьютере, то аналоговый сигнал переводят в дискретный вид.

Любая динамическая система характеризуется рядом параметров. Обычно (чаще всего) параметрами называют коэффициенты при производных (первой, второй и т. д.) в записи модели. Чем большая степень старшей производной присутствует в записи модели, тем больший порядок динамической системы, тем глубже ее память, и тем больше коэффициентов (параметров) надо определить, чтобы идентифицировать систему.

Как определить параметры динамической системы? Сначала нужно оценить порядок динамической системы: он совпадает со степенью наибольшей из производных Y по отношению к t.