
- •1. Назначение модели. Роль моделирования в процессе познания.
- •Назначение и функции модели
- •2. Понятие моделирования. Основные принципы моделирования.
- •3. Цели и задачи компьютерного моделирования.
- •4. Основные этапы компьютерного моделирования.
- •5. Понятие модели и их классификация.
- •6. Адекватность модели объекту.
- •Проверка адекватности
- •7. Основной тезис формализации. Понятие знака, языка. Классификация
- •8. Формализация текстовой информации.
- •9. Представление данных в табличной форме.
- •10. Представление информации в форме графа (как частный случай дерева).
- •11.Информационная модель (определение). Постулаты, лежащие в основе информационного моделирования.
- •12.Различные подходы к классификации информационных моделей.
- •Классификация информационных моделей
- •13.Классификационные модели.
- •14. Динамические модели. Модель динамики популяции. Динамические модели
- •Модель динамики популяции.
- •15.Математические модели и их классификация.
- •Классификация математических моделей.
- •Математические модели с сосредоточенными параметрами.
- •Математические модели с распределенными параметрами.
- •Математические модели, основанные на экстремальных принципах.
- •Основной принцип классификации математических моделей
- •16.Моделирование стохастических систем. Датчик случайных чисел. Критерии достоверности датчика случайных чисел.
- •18. Примеры математических моделей в различных отраслях знаний.
- •19. Имитационное моделирование. Этапы имитационного моделирования.Отличительные признаки методов математического и имитационного моделирования. Имитационные эксперименты.
- •Этапы имитационного моделирования
- •20. Понятие компьютерной графики. Иллюстративная и когнитивная функции компьютерной графики.
- •21. Когнитивная компьютерная графика: задачи, основной алгоритм использования, применение в теории чисел, пифагорограммы.
- •Достоверность численной модели.
- •23.Применение численного моделирования для моделирования физических процессов.
- •24. Понятие педагогического программного средства (ппс). Классификация
20. Понятие компьютерной графики. Иллюстративная и когнитивная функции компьютерной графики.
В настоящее время компьютерная графика - это одно из наиболее бурно развивающихся направлений новых информационных технологий. Так, в научных исследованиях, в том числе и в фундаментальных, характерный для начального этапа акцент на иллюстративной функции КГ все более смещается в сторону использования тех возможностей КГ, которые позволяют активизировать свойственную человеку способность мыслить сложными пространственными образами. В связи с этим начинают четко различать две функции КГ: иллюстративную и когнитивную.
Иллюстративная функция КГ позволяет воплотить в более или менее адекватном визуальном оформлении лишь то, что уже известно, т.е. уже существует либо в окружающем нас мире, либо как идея в голове исследователя. Когнитивная же функция КГ состоит в том, чтобы с помощью некоего графического изображения получить новое, т.е. еще не существующее даже в голове специалиста знание или, по крайней мере, способствовать интеллектуальному процессу получения этого знания. Иллюстративные функции КГ реализуются в системах декларативного типа при передаче пользователям артикулируемой части знания, представленной в виде заранее подготовленной информации с графическими анимационными - и видео иллюстрациями.
Когнитивная же функция КГ проявляется в системах процедурного типа, когда пользователи "добывают" знания с помощью исследований, как на математических моделях изучаемых объектов, так и в процессе анализа оперативной деятельности ЛПР на различных видах объектов контроля и управления. Понятно, что поскольку этот процесс формирования знаний опирается на интуитивный правополушарный механизм мышления, сами эти знания в существенной мере носят экспертный характер
21. Когнитивная компьютерная графика: задачи, основной алгоритм использования, применение в теории чисел, пифагорограммы.
Когнитивная графика— это совокупность приемов и методов образного представления условийзадачи, которое позволяет либо сразу увидеть решение, либо получить подсказку для его нахождения.
Методы когнитивной графики используются в искусственном интеллектев системах, способных превращать текстовые описания задач в их образные представления, и при генерации текстовых описаний картин, возникающих во входных и выходных блоках интеллектуальных систем, а также вчеловеко-машинных системах, предназначенных для решения сложных, плохоформализуемыхзадач.
Поспеловсформулировал три основных задачи когнитивнойкомпьютерной графики:
создание таких моделей представления знаний, в которых была бы возможность однообразными средствами представлять как объекты, характерные для логического мышления, так и образы-картины, с которыми оперирует образное мышление,
визуализация тех человеческих знаний, для которых пока невозможно подобрать текстовые описания,
поиск путей перехода от наблюдаемых образов-картин к формулировке некоторой гипотезы о тех механизмах и процессах, которые скрыты за динамикой наблюдаемых картин.
ККГ-система ДСТЧ (Диалоговая Система для ККГ-исследований проблем аддитивной Теории Чисел). Эта система создает цвето-музыкальные ККГ-образы (так называемые пифограммы, - естественно, в честь великого Пифагора с его знаменитым лозунгом-постулатом "Мир есть Число и Гармония поющих Небесных Сфер!") математических объектов, которые (эти пифограммы) способны подсказывать человеку такие новые математические идеи и гипотезы (короче, – новое знание), которые, как свидетельствует история, в течение тысячелетий оставались недоступными для традиционных до-компьютерных технологий познания типа "мел - доска", "перо - бумага", "не знаешь - двойка", "дневник - ремень", и т.п.
22. Понятие численного эксперимента. Проведение аналогии между численным и лабораторным экспериментом. Взаимосвязь численного эксперимента с натурным экспериментом и теорией. Достоверность численной модели. Анализ и интерпретация модели.
Численный эксперимент выясняет, соответствует ли модель реальному объекту (процессу). Модель адекватна реальному процессу, если некоторые характеристики процесса, полученные на компьютере, совпадают с экспериментальными с заданной степенью точности. По сравнению с натурным экспериментом математическое моделирование имеет следующие преимущества: • экономичность (сбережение ресурсов реальной системы); • возможность моделирования гипотетических, т.е. не реализованных в натуре объектов; • возможность реализации режимов, опасных или трудновоспроизводимых в натуре (критический режим ядерного реактора, работа системы противоракетной обороны); • возможность изменения масштаба времени; • легкость многоаспектного анализа; • большая прогностическая сила вследствие возможности выявления общих закономерностей; • универсальность технического и программного обеспечения проводимой работы.
Этапы вычислительного эксперимента: 1. Построение математической модели в виде формальной системы (исчисления). 2. Построение абстрактного вычислительного алгоритма (Р – полиномиальный, NP – недетерминированный полиномиальный, Е – экспоненциальный). 3. Построение физической компьютерной информационной модели.
Вычислительным экспериментом называется методология и технология исследований, основанные на применении прикладной математики и ЭВМ как технической базы при использовании ММ. Вычислительный эксперимент основывается на создании ММ изучаемых объектов, которые формируются с помощью некоторой особой математической структуры, способной отражать свойства объекта, проявляемые им в различных экспериментальных условиях, и включает в себя следующие этапы [26].
1. Для исследуемого объекта строится модель, обычно сначала физическая, фиксирующая разделение всех действующих в рассматриваемом явлении факторов на главные и второстепенные, которые на данном этапе исследования отбрасываются; одновременно формулируются допущения и условия применимости модели, границы, в которых будут справедливы полученные результаты; модель записывается в математических, терминах, как правило, в виде дифференциальных или интегро-дифференциальных уравнений; создание ММ проводится специалистами, хорошо знающими данную область естествознания или техники, а также математиками, представляющими себе возможности решения математической задачи [37].
2. Разрабатывается метод решения сформулированной математической задачи. Эта задача представляется в виде совокупности алгебраических формул, по которым должны вестись вычисления и условия, показывающие последовательность применения этих формул; набор этих формул и условий носит название вычислительного алгоритма. Вычислительный эксперимент имеет многовариантный характер, так как решения поставленных задач часто зависят от многочисленных входных параметров. Тем не менее, каждый конкретный расчет в вычислительном эксперименте проводится при фиксированных значениях всех параметров. Между тем в результате такого эксперимента часто ставится задача определения оптимального набора параметров. Поэтому при создании оптимальной установки приходится проводить большое число расчетов однотипных вариантов задачи, отличающихся значением некоторых параметров. В связи с этим при организации вычислительного эксперимента можно использовать эффективные численные методы,
3. Разрабатываются алгоритм и программа решения задач на ЭВМ. Программирование решений определяется теперь не только искусством и опытом исполнителя, а перерастает в самостоятельную науку со своими принципиальными подходами.
4. Проведение расчетов на ЭВМ. Результат получается в виде некоторой цифровой информации, которую далее необходимо будет расшифровать. Точность информации определяется при вычислительном эксперименте достоверностью модели, положенной в основу эксперимента, правильностью алгоритмов и программ (проводятся предварительные «тестовые» испытания).
5. Обработка результатов расчетов, их анализ и выводы [35]. На этом этапе могут возникнуть необходимость уточнения ММ (усложнения или, наоборот, упрощения), предложения по созданию упрощенных инженерных способов решения и формул, дающих возможности получить необходимую информацию более простым способом.
Вычислительный эксперимент приобретает исключительное значение в тех случаях, когда натурные эксперименты и построение физической модели оказываются невозможными. Особенно ярко можно проиллюстрировать значение вычислительного эксперимента при исследовании влияния городской застройки на параметры распространения радиосигнала
Пригодность ММ для решения задач исследования характеризуется тем, в какой степени она обладает так называемыми целевыми свойствами, основными из которых являются адекватность, устойчивость и чувствительность.