
- •1. Назначение модели. Роль моделирования в процессе познания.
- •Назначение и функции модели
- •2. Понятие моделирования. Основные принципы моделирования.
- •3. Цели и задачи компьютерного моделирования.
- •4. Основные этапы компьютерного моделирования.
- •5. Понятие модели и их классификация.
- •6. Адекватность модели объекту.
- •Проверка адекватности
- •7. Основной тезис формализации. Понятие знака, языка. Классификация
- •8. Формализация текстовой информации.
- •9. Представление данных в табличной форме.
- •10. Представление информации в форме графа (как частный случай дерева).
- •11.Информационная модель (определение). Постулаты, лежащие в основе информационного моделирования.
- •12.Различные подходы к классификации информационных моделей.
- •Классификация информационных моделей
- •13.Классификационные модели.
- •14. Динамические модели. Модель динамики популяции. Динамические модели
- •Модель динамики популяции.
- •15.Математические модели и их классификация.
- •Классификация математических моделей.
- •Математические модели с сосредоточенными параметрами.
- •Математические модели с распределенными параметрами.
- •Математические модели, основанные на экстремальных принципах.
- •Основной принцип классификации математических моделей
- •16.Моделирование стохастических систем. Датчик случайных чисел. Критерии достоверности датчика случайных чисел.
- •18. Примеры математических моделей в различных отраслях знаний.
- •19. Имитационное моделирование. Этапы имитационного моделирования.Отличительные признаки методов математического и имитационного моделирования. Имитационные эксперименты.
- •Этапы имитационного моделирования
- •20. Понятие компьютерной графики. Иллюстративная и когнитивная функции компьютерной графики.
- •21. Когнитивная компьютерная графика: задачи, основной алгоритм использования, применение в теории чисел, пифагорограммы.
- •Достоверность численной модели.
- •23.Применение численного моделирования для моделирования физических процессов.
- •24. Понятие педагогического программного средства (ппс). Классификация
Модель динамики популяции.
Будем считать, что учет численности популяии производится в дискретные моменты времени(один раз в год для зайцев или один раз в день для бактерий – непринципиально). Пусть Nn– численность популяции вn-й момент времени,n=1,2 …
Для построения модели требуется учесть
основные факторы, влияющие на изменение
численности. Таковыми являются рождаемость
и смертность. Предполагается, что за
время, прошедшее между соседними
моментами наблюдений nиn+ 1, появилось на светNnи
умерло
Nnосыбей. Данное предположение кажется
достаточно естественным: количество
родившихся, как и количество умерших
осыбей должно быть пропорционально
общему числуNnосыбей в популяуии. Соответствующие
пропорции задаются параметрами
-
коэффициент рождаемости,
– коэффициент смертности. Отметим, что
0<=
,
<=1.
В результате учета этих факторов получаем уровнение:
Nn+1=
Nn +
Nn +
Nn=
Nn
(1),
То есть линейную модель динамики
популяции. Эта модель в действительности
зависит только от одного параметра - коэффициент естественного прироста,
>=0.
15.Математические модели и их классификация.
Математическая модель- это совокупность математических объектов и соотношений между ними, адекватно отображающая свойства и поведение исследуемого объекта.
Математика в самом общем смысле слова имеет дело с определением и использованием символических моделей. Математическая модель охватывает класс неопределяемых (абстрактных, символических) математических объектов таких, как числа или векторы, и отношения между этими объектами.
Математическая модель будет воспроизводить подходящим образом выбранные стороны физической ситуации, если можно установить правило соответствия, связывающее специфические физические объекты и отношения с определенными математическими объектами и отношениями. Поучительным и/или интересным может также быть и построение математических моделей, для которых в физическом мире аналогов не существует. Наиболее общеизвестными математическими моделями являются системы целых и действительных чисел и евклидова геометрия; определяющие свойства этих моделей представляют собой более или менее непосредственные абстракции физических процессов (счет, упорядочение, сравнение, измерение).
Объекты и операции более общих математических моделей часто ассоциируются с множествами действительных чисел, которые могут быть соотнесены с результатами физических измерений.
Математическое моделирование - метод качественного и (или) количественного описания процесса с помощью, так называемой математической модели, при построении которой реальный процесс или явление описывается с помощью того или иного адекватного математического аппарата. Математическое моделирование является неотъемлемой частью современного исследования.
Классификация математических моделей.
Ввиду разнообразия применяемых математических моделей, их общая классификация затруднена. В литературе обычно приводят классификации, в основу которых положены различные подходы. Один из таких подходов связан с характером моделируемого процесса, когда выделяют детерминированные и вероятностные модели. Наряду с такой широко распространенной классификацией математических моделей существуют и другие.
Классификация математических моделей на основе особенностей применяемого математического аппарата.В ней можно выделить следующие их разновидности.