
- •Pulp Purification Herbert Sixta
- •9.2.2.1 Introduction
- •Introduction
- •10.4 Emissions to the Aquatic Environment
- •Is converted into carbon dioxide, while the other half is converted into biomass
- •Into alcohols and aldehydes; (c) conversion of these intermediates into acetic acid and
- •10 Environmental Aspects of Pulp Production
- •In North America, effluent color is a parameter which must be monitored.
- •It is not contaminated with other trace elements such as mercury, lead, or cadmium.
- •10.6 Outlook
- •Increase pollution by causing a higher demand for a chemical to achieve identical
- •In addition negatively affect fiber strength, which in turn triggers a higher
- •Introduction
- •2002, Paper-grade pulp accounts for almost 98% of the total wood pulp production
- •Important pulping method until the 1930s) continuously loses ground and finds
- •Importance in newsprint has been declining in recent years with the increasing
- •Isbn: 3-527-30999-3
- •Virtually all paper and paperboard grades in order to improve strength properties.
- •In fact, the word kraft is the Swedish and German word for strength. Unbleached
- •Importance is in the printing and writing grades. In these grades, softwood
- •In this chapter, the main emphasis is placed on a comprehensive discussion of
- •1010 11 Pulp Properties and Applications
- •Is particularly sensitive to alkaline cleavage. The decrease in uronic acid content
- •Xylan in the surface layers of kraft pulps as compared to sulfite pulps has been
- •80% Cellulose content the fiber strength greatly diminishes [14]. This may be due
- •Viscoelastic and capable of absorbing more energy under mechanical stress. The
- •11.2 Paper-Grade Pulp 1011
- •Various pulping treatments using black spruce with low fibril
- •In the viscoelastic regions. Fibers of high modulus and elasticity tend to peel their
- •1012 11 Pulp Properties and Applications
- •11.2 Paper-Grade Pulp
- •Viscosity mL g–1 793 635 833 802 1020 868 1123
- •Xylose % od pulp 7.3 6.9 18.4 25.5 4.1 2.7 12.2
- •11 Pulp Properties and Applications
- •Inorganic Compounds
- •11.2 Paper-Grade Pulp
- •Insight into many aspects of pulp origin and properties, including the type of
- •Indicate oxidative damage of carbohydrates).
- •In general, the r-values of paper pulps are typically at higher levels as predicted
- •Is true for sulfite pulps. Even though the r-values of sulfite pulps are generally
- •Is rather unstable in acid sulfite pulping, and this results in a low (hemicellulose)
- •11 Pulp Properties and Applications
- •Ing process, for example the kraft process, the cellulose:hemicellulose ratio is
- •Increases by up to 100%. In contrast to fiber strength, the sheet strength is highly
- •Identified as the major influencing parameter of sheet strength properties. It has
- •In contrast to dissolving pulp specification, the standard characterization of
- •Is observed for beech kraft pulp, which seems to correlate with the enhanced
- •11.2 Paper-Grade Pulp
- •11 Pulp Properties and Applications
- •Is significantly higher for the sulfite as compared to the kraft pulps, and indicates
- •11.2 Paper-Grade Pulp
- •Xylan [24].
- •11 Pulp Properties and Applications
- •11.2 Paper-Grade Pulp
- •11 Pulp Properties and Applications
- •Introduction
- •Various cellulose-derived products such as regenerated fibers or films (e.G.,
- •Viscose, Lyocell), cellulose esters (acetates, propionates, butyrates, nitrates) and
- •In pulping and bleaching operations are required in order to obtain a highquality
- •Important pioneer of cellulose chemistry and technology, by the statement that
- •11.3 Dissolving Grade Pulp
- •Involves the extensive characterization of the cellulose structure at three different
- •Is an important characteristic of dissolving pulps. Finally, the qualitative and
- •Inorganic compounds
- •11 Pulp Properties and Applications
- •11.3.2.1 Pulp Origin, Pulp Consumers
- •Include the recently evaluated Formacell procedure [7], as well as the prehydrolysis-
- •11.3 Dissolving Grade Pulp
- •Viscose
- •11 Pulp Properties and Applications
- •11.3.2.2 Chemical Properties
- •11.3.2.2.1 Chemical Composition
- •In the polymer. The available purification processes – particularly the hot and cold
- •11.3 Dissolving Grade Pulp
- •In the steeping lye inhibits cellulose degradation during ageing due to the
- •Is governed by a low content of noncellulosic impurities, particularly pentosans,
- •Increase in the xylan content in the respective viscose fibers clearly support the
- •11.3 Dissolving Grade Pulp
- •Instability. Diacetate color is measured by determining the yellowness coefficient
- •Xylan content [%]
- •11 Pulp Properties and Applications
- •Xylan content [%]
- •11.3 Dissolving Grade Pulp
- •11.3 Dissolving Grade Pulp
- •Is, however, not the only factor determining the optical properties of cellulosic
- •In the case of alkaline derivatization procedures (e.G., viscose, ethers). In industrial
- •11.3 Dissolving Grade Pulp
- •Viscose
- •Viscose
- •In order to bring out the effect of mwd on the strength properties of viscose
- •Imitating the regular production of rayon fibers. To obtain a representative view
- •11 Pulp Properties and Applications
- •Viscose Ether (hv) Viscose Acetate Acetate
- •Xylan % 3.6 3.1 1.5 0.9 0.2
- •1.3 Dtex regular viscose fibers in the conditioned
- •11.3 Dissolving Grade Pulp
- •Is more pronounced for sulfite than for phk pulps. Surprisingly, a clear correlation
- •Viscose fibers in the conditioned state related to the carbonyl
- •1038 11 Pulp Properties and Applications
- •In a comprehensive study, the effect of placing ozonation before (z-p) and after
- •Increased from 22.9 to 38.4 lmol g–1 in the case of a pz-sequence, whereas
- •22.3 To 24.2 lmol g–1. The courses of viscosity and carboxyl group contents were
- •Viscosity measurement additionally induces depolymerization due to strong
- •11 Pulp Properties and Applications
- •Increasing ozone charges. For more detailed
- •11.3 Dissolving Grade Pulp
- •Is more selective when ozonation represents the final stage according to an
- •11.3.2.3 Supramolecular Structure
- •1042 11 Pulp Properties and Applications
- •Is further altered by subsequent bleaching and purification processes. This
- •Involved in intra- and intermolecular hydrogen bonds. The softened state favors
- •11.3 Dissolving Grade Pulp
- •Interestingly, the resistance to mercerization, which refers to the concentration of
- •11 Pulp Properties and Applications
- •Illustrate that the difference in lye concentration between the two types of dissolving
- •Intensity (see Fig. 11.18: hw-phk high p-factor) clearly changes the supramolecular
- •11.3 Dissolving Grade Pulp
- •Viscose filterability, thus indicating an improved reactivity.
- •11 Pulp Properties and Applications
- •Impairs the accessibility of the acetylation agent. When subjecting a low-grade dissolving
- •Identification of the cell wall layers is possible by the preferred orientation of
- •Viscose pulp (low p-factor) (Fig. 11.21b, top). Apparently, the type of pulp – as well
- •11 Pulp Properties and Applications
- •150 °C for 2 h, more than 70% of a xylan, which was added to the cooking liquor
- •20% In the case of alkali concentrations up to 50 g l–1 [67]. Xylan redeposition has
- •11.3 Dissolving Grade Pulp
- •Xylan added linters cooked without xylan linters cooked with xylan
- •Viscosity
- •In the surface layer than in the inner fiber wall. This is in agreement with
- •11 Pulp Properties and Applications
- •Xylan content in peelings [wt%]
- •Xylan content located in the outermost layers of the beech phk fibers suggests
- •11.3.2.5 Fiber Morphology
- •11 Pulp Properties and Applications
- •50 And 90%. Moreover, bleachability of the screened pulps from which the wood
- •11.3.2.6 Pore Structure, Accessibility
- •11.3 Dissolving Grade Pulp
- •Volume (Vp), wrv and specific pore surface (Op) were seen between acid sulfite
- •11 Pulp Properties and Applications
- •Irreversible loss of fiber swelling occurs; indeed, Maloney and Paulapuro reported
- •In microcrystalline areas as the main reason for hornification [85]. The effect of
- •105 °C, thermal degradation proceeds in parallel with hornification, as shown in
- •Increased, particularly at temperatures above 105 °c. The increase in carbonyl
- •In pore volume is clearly illustrated in Fig. 11.28.
- •11.3 Dissolving Grade Pulp
- •Viscosity
- •11 Pulp Properties and Applications
- •Increase in the yellowness coefficient, haze, and the amount of undissolved particles.
- •11.3.2.7 Degradation of Dissolving Pulps
- •In mwd. A comprehensive description of all relevant cellulose degradation processes
- •Is reviewed in Ref. [4]. The different modes of cellulose degradation comprise
- •11.3 Dissolving Grade Pulp
- •50 °C, is illustrated graphically in Fig. 11.29.
- •11 Pulp Properties and Applications
- •In the crystalline regions.
- •11.3 Dissolving Grade Pulp
- •Important dissolving pulps, derived from hardwood, softwood and cotton linters
- •11.3 Dissolving Grade Pulp 1061
- •Xylan rel% ax/ec-pad 2.5 3.5 1.3 1.0 3.2 0.4
- •Viscosity mL g–1 scan-cm 15:99 500 450 820 730 1500 2000
- •1062 11 Pulp Properties and Applications
Introduction
Pulp represents the major raw material basis for two main applications: (a) for
paper and board production, where the pulp fibers are mechanically modified to
give a coherent sheet; and (b) for chemical conversion to products such as regenerated
fibers and cellulose derivatives. The former is denoted as paper grade, the
latter as dissolving grade pulp. Paper-grade pulp is by far the most dominant field
of pulp production. With an annual production of about 190 million tonnes in
2002, Paper-grade pulp accounts for almost 98% of the total wood pulp production
(see Chapter 1, Tab. 2, Tab. 3 in Part I). A large variety of different unbleached and
bleached mechanical and chemical pulps comprise the raw material basis for
paper and board products. The kraft process represents the dominating pulping
technology (130 million tonnes in 2004), while the sulfite process (being the most
Important pulping method until the 1930s) continuously loses ground and finds
application only in certain niche markets.
Sulfite pulp is characterized by rather week strength properties, and is typically
used in products that require good sheet formation and moderate strength. Historically,
sulfite has been most widely used in newsprint furnish. However, its
Importance in newsprint has been declining in recent years with the increasing
use of stronger mechanical pulps such as thermomechanical pulp (TMP) and
chemo-thermomechanical pulp (CTMP). However, their use is mostly restricted
to applications such as newsprint, toilet tissues, and paperboard as they tend to
yellow on age due to the high content of residual lignin (20–25%).
Semi-chemical pulps with a typical residual lignin content of 10–15% represent
the transition from mechanical to chemical pulps. There are several types of semichemical
pulps in production, but the most important of these is Neutral Sulfite
Semi-Chemical (NSSC). NSSC is made primarily from hardwood species, and is
noted for its exceptional stiffness and high rigidity. Its primary use is for the production
of corrugating medium as well as printing papers, greaseproof papers,
and bond papers.
Handbook of Pulp. Edited by Herbert Sixta
Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Isbn: 3-527-30999-3
©2006 WILEY-VCHVerlag GmbH&Co .
Handbook of Pulp
Edited by Herbert Sixta
Kraft pulp is noted for its superior strength characteristics, and can be used in
Virtually all paper and paperboard grades in order to improve strength properties.
In fact, the word kraft is the Swedish and German word for strength. Unbleached
kraft is usually made with softwood and is used primarily in furnishes of kraft
linerboard, wrapping paper and bag papers such as grocery bags. Semi-bleached
kraft is used in furnishes of such grades which do not require high brightness,
like newsprint and other groundwood-based papers. Bleached kraft is used in a
much wider range of products than either unbleached or semi-bleached. Its greatest