
- •1 Сырые материалы доменной плавки
- •1.1 Каменноугольный кокс
- •1.1.1 Процесс коксования
- •1.1.2 Устройство коксовых печей и цехов
- •1.1.3 Качество кокса
- •1.2 Железные руды
- •1.2.1 Классификация и генезис железных руд
- •1.2.2 Оценка качества железных руд
- •1.2.3 Важнейшие месторождения железных руд
- •2 Подготовка железных руд к доменной плавке
- •2.1 Современная к схема подготовки руд к доменной плавке
- •2.2 Агломерация железных руд и концентратов
- •2.2.1 Общие вопросы
- •2.2.2 Конвейерные агломерационные машины
- •2.2.3 Реакции между твердыми фазами
- •2.2.4 Плавление шихты, кристаллизация расплава и образование конечной микроструктуры агломерата
- •2.2.5 Удаление вредных примесей из шихты при спекании руд и концентратов
- •2.2.6 Качество агломерата
- •2.3 Производство железорудных окатышей
- •2.3.1 Получение сырых окатышей
- •2.3.2 Высокотемпературное упрочнение окатышей
- •2.3.3 Получение окатышей безобжиговым путем
- •2.3.4 Металлургические свойства окатышей
- •2.3.5 Сравнение металлургических свойств агломерата и окатышей
- •2.3.6 Производство металлизованных окатышей
- •2.4 Процессы восстановления в доменной печи
- •3 Образование чугуна и его свойства
- •3.1 Интенсификация доменной плавки
- •3.1.1 Нагрев дутья
- •3.1.2 Обогащение дутья кислородом
- •3.1.3 Водяной пар в дутье
- •3.1.4 Вдувание углеродсодержащих веществ в доменную печь
- •3.2 Профиль доменной печи
- •3.2.1 Общее понятие о профиле
- •3.2.2 Основные размеры профиля и его составные части
- •3.1. Производство стали в конвертерах.
- •3.1.1 Бессемеровский процесс.
- •3.1.2 Томасовский процесс.
- •3.1.3 Кислородно-конвертерный процесс.
- •3.3 Производство стали в мартеновских печах.
- •3.4 Производство стали в электрических печах.
- •3.5 Новые методы производства и обработки стали.
- •4 Ферросплавы
- •4.1 Введение
- •4.2 Сырые материалы
- •4.2.1 Требования к рудам и их выбор
- •4.2.2 Восстановители
- •4.2.3 Железосодержащие материалы
- •4.2.4 Флюсы
- •4.3 Основные элементы конструкции рвп
- •5 Технический (металлургический) кремний
- •5.1 Особенности процесса карботермического восстановления кремния в горне электропечи
- •5.1.1 Общие положения
- •5.1.2. Влияние температуры предварительного нагрева шихты на химизм карботермического восстановления кремнезема
- •5.1.3. Схема технологических зон горна электропечи
- •5.1.4 Влияние примесей шихты на состав технического кремния
- •5.2 Ферросилиций
- •5.2.1 Физико-химические основы получения ферросилиция.
- •5.2.2 Технология производства ферросилиция.
- •6 Сплавы марганца
- •6.1 Применение и состав сплавов марганца
- •6.2 Марганцевые руды и их подготовка к плавке
- •6.3 Производство сплавов марганца
- •6.3.1 Высокоуглеродистый ферромарганец.
- •6.3.2 Силикомарганец
- •6.3.3 Низко- и среднеуглеродистый ферромарганец.
- •6.3.4 Металлический марганец.
- •7 Общие сведения о рудах и концентратах олова
- •7.1 Требования, предъявляемые к рудам и концентратам
- •7.2 Минералы олова
- •7.3 Промышленные типы месторождений олова
- •7.4 Типы оловянных концентратов, поступающих в металлургический передел
- •7.5 Методы обогащения оловянных руд
- •7.6 Влияние типа и вещественного состава руд на их обогатимость
- •7.7 Обогащение россыпей и коренных руд олова
- •7.7.1 Обогащение оловосодержащих россыпей
- •7.7.2 Обогащение оловянных руд коренных месторождений
- •7.8 Доводка оловянных концентратов
- •7.9 Основы современной металлургии олова
- •7.10 Основы теории оловянной восстановительной плавки
- •7.10.1 Восстановление окиси олова и сопутствующих металлов в условиях оловянной плавки
- •7.10.2 Кинетика восстановления окислов металлов и скорость плавки
- •7.10.3 Шлаки оловянной восстановительной плавки
- •7.10.4 Плавка в электрических печах
- •7.10.5 Отечественная практика электроплавки оловянных концентратов
- •7.11 Схема рафинирования олова пирометаллургическим способом
- •8 Производство свинца
- •8.1 Введение
- •8.2 Руды и концентраты
- •8.3 Способы получения свинца
- •8.4 Шихта
- •8.4.1 Состав шихты
- •8.4.2 Приготовление шихты
- •8.4.3 Агломерирующий обжиг свинцовых концентратов
- •8.5 Теория шахтной восстановительной плавки
- •8.5.1 Общие сведения
- •8.5.2 Теоретические основы восстановления окислов металлов
- •8.5.3 Восстановительная способность печи и способы ее регулирования
- •8.5.4 Шлак свинцовой плавки
- •8.5.5 Штейн и шпейза
- •8.5.6 Шахтная восстановительная плавка
- •8.5.7 Топливо
- •8.5.8 Дутье
- •8.6 Реакционная плавка свинца
- •8.6.1 Теоретическая сущность процесса
- •8.6.2 Реакционная плавка в короткобарабанной печи
- •8.7 Электроплавка свинца
- •8.7.1 Реакционная электроплавка свинца
- •8.7.2 Восстановительная электроплавка свинца
- •9.1 Общие сведения и методы получения
- •9.2 Технологические свойства
- •9.3 Области применения
- •9.4 Характеристика рудного цинкового сырья
- •9.5 Основные способы извлечения цинка из сырья
- •9.6 Обжиг цинковых сульфидных концентратов
- •9.6.1 Цели и типы обжига
- •9.6.2 Химизм процессов обжига
- •9.6.3 Обжиг цинковых концентратов для выщелачивания
- •9.7 Химизм кислотно-основных взаимодействий при выщелачивании
- •9.8 У глетермическое восстановление цинка
- •9.8.1 Цели и типы восстановления
- •9.8.2 Химизм восстановления окисленных цинковых материалов
- •9.9 Вельцевание цинковых кеков, цинковистых шлаков и других материалов
- •9.10 Дистилляция цинка из агломерата
- •10 Производство меди и никеля
- •10.1 Сырье для производства меди и никеля. Вспомогательные материалы
- •10.1.1 Классификация рудного сырья
- •10.1.2 Медные руды
- •10.1.3 Никелевые руды
- •10.2 Электроплавка окисленных никелевых руд.
- •10.3 Электроплавка сульфидных медно-никелевых руд и концентратов
- •10.4 Конвертирование никелевых и медно-никелевых штейнов
- •10.4.1 Термодинамика основных реакций процесса
- •10.4.2 Конвертирование никелевых и медно-никелевых штейнов
- •10.5 Переработка медно-никелевого файнштейна
- •10.5.1 Разделение медно-никелевого файнштепна флотацией
- •10.5.2 Обжиг никелевого файнштейна и концентрата. Восстановительная электроплавка закиси никеля.
- •10.6 Восстановительная электроплавка закиси никеля
- •10.7 Способы получения меди из рудного сырья
- •11 Способы получения алюминия
- •11.1 Основы электролиза криолитоглиноземиых расплавов
- •11.2 Сырье и основные материалы
- •11.2.1 Основные минералы и руды алюминия
- •11.2.2 Фториды
- •11.2.3 Огнеупорные и теплоизоляционные материалы
- •11.2.4 Проводниковые материалы
- •11.3 Корректировка состава электролита
- •11.4 Выливка металла
- •11.5 Транспортно-технологическая схема цеха электролиза
- •11.6 Способы очистки отходящих газов
9.4 Характеристика рудного цинкового сырья
В природе цинк встречается главным образом в виде сульфида и в меньшей степени—в виде кислородных соединений. В соответствии с преобладающими минералами цинковые руды делят на сульфидные и окисленные. Наибольшее промышленное значение имеют свинцово-цинковые сульфидные полиметаллические руды, содержащие, кроме цинка и свинца, также медь, кадмий, благородные и редкие металлы. Рост масштабов добычи и производительности используемой при этом техники потребовал массовых обрушений горной массы, что вызывает разубоживание добытой руды за счет захваченной попутно пустой породы. Истощение запасов богатых руд заставляет вовлекать в разработку более бедные руды сложной структуры, что также ведет к получению бедного металлургического сырья. Основным способом первичной переработки сульфидных свинцово-цинковых руд является селективное флотационное обогащение с получением цинкового, свинцового, а иногда медного и пиритного концентратов.
Рудные залежи разнообразны по структуре. Обычно залежи сплошных сульфидных руд перемежаются более или менее значительными зонами вкрапленников, а в верхней части переходят в зону окисленных минералов. Сульфидные руды содержат цинк главным образом в форме сфалерита (низкотемпературная модификация ZnS), а иногда в форме вюрцита (высокотемпературная модификация ZnS). Железистые разновидности ZnS называют марматитом. Содержание железа в марматите существенно влияет на извлечение цинка из сырья при гидрометаллургическом производстве цинка. В окисленных цинковых рудах цинк представлен главным образом в форме карбонатов (смитсонит ZnCO3 и гидроцинкит ZnCO3 • 3 Zn(OH)2 с изоморфными примесями железа и меди) и силикатов (виллемит Zn2SiO4 и каламин Zn4(OH)2, [Si2O7] • Н2О).
Извлечение цинка в цинковый концентрат обычно составляет 70—85 % от содержания в сульфидных свинцово-цинковых рудах. Содержания технологических важных компонентов в цинковых концентратах обычно укладываются в следующие пределы, %: Zn 40-60; Pb 0,2-3,5; Сu 0,15-2,3; Fe 2,5-13; S 30-35; Cd 0,1-0,5; As 0,03-0,3; Sb 0,01-0,07; Co 0,001-0,013; In 0,001-0,07. Дисперсность концентратов обычно такова, что верхний предел крупности 300 мкм, в том числе фракция -75 мкм составляет 35-50 %, но из тонкодисперсных руд концентраты имеют верхний предел крупности 100 мкм и содержат 70-90% фракции - 75 мкм.
9.5 Основные способы извлечения цинка из сырья
Сульфидное цинковое сырье можно подвергнуть прямому восстановлению с получением металлического цинка, например, по реакции ZnS + H2↔ Zn + H2S.
Однако даже такие активные восстановители, как Н2 и СО, при весьма высоких температурах неэффективны. Практически рациональней проводить раздельно окисление ZnS и восстановление окисленного цинка до металла.
В промышленности окисление ZnS с получением ZnO проводят пирометаллургическим способом, т.е. в газовой среде при высоких температурах. Восстановление цинка из ZnO проводят или пирометаллургическим, или гидрометаллургическим способом. Последний состоит в том, что водный раствор ZnS04 • aq, полученный кислотным растворением ZnO, подвергают электролизу. В зависимости от способа восстановления окисленного цинка различают пирометаллургическое и гидрометаллургическое получение цинка. Технологические схемы того и другого способов представлены на рис. 75 и 76. Эти схемы предельно упрошены и отражают лишь принцип технологий.
Промышленные способы получения цинка из сульфидных концентратор обусловлены свойствами ZnS, ZnO и цинка. Сульфид и оксид цинка тугоплавки. Так, ZnS при атмосферном давлении возгоняется при t ≥ 1200°С, но не плавится вплоть до 2000 С, a ZnO плавится при t ≈ 1975°С. Поэтому окисление ZnS с получением ZnO можно вести е большой скоростью благодаря сохранению дисперсного твердого состояния материала яри высоких температурах (развитость поверхности контакта взаимодействующих фаз). Процесс окисления ZnS экэотермичен и при достаточно высоких температурах не требует топлива (скорость тепловыделения достаточна для поддержания температуры за счет тепла реакции) и даже позволяет использовать процесс как источник энергии.
|
|
Рис. 75. Технологическая схема пирометаллургического получения цинка |
Рис. 76. Технологическая схема гидрометаллургического получения цинка |
Восстановление цинка из оксида требует больших затрат энергии. Поэтому пирометаллургическое восстановление осуществляют при высоких температурах и концентрациях СО (восстановитель). Электролитическое восстановление также связано с большим расходом электроэнергии, а напряжение выделения цинка значительно выше, чем для других тяжелых цветных металлов. Металлический цинк легкоплавок (tпл =419°С) и летуч (tкип = 907°С при атмосферном давлении), поэтому в условиях термического восстановления цинка из ZnO образуется парообразный металлический цинк. Рассмотрим особенности пиро- и гидрометаллургического способов получения цинка.
При пирометаллургическом способе (см. рис. 75) в конечном счете получают огарок в виде пористых и прочных кусков, т.е. агломерата. Обжиг ведут так, чтобы материал сначала терял в результате окисления серу, а затем спекался. Для спекания материала необходимо, чтобы в слое развивалась температура 1300—1400°С. Пористость и кусковатость агломерата обеспечивают ему необходимую газопроницаемость для последующего углетермического восстановления цинка. Восстановителем служит газифицированный углерод (СО). Процесс ведут с отгонкой образующегося парообразного металлического цинка (дистилляция). При этом расходуется значительное количество высококачественного топлива.
При гидрометаллургическом получении цинка (см. рис. 76) обжиг ведут с получением огарка-порошка при 900—1000°С. Высокая дисперсность огарка способствует быстрому и полному выщелачиванию его в растворе H2SO4. Раствор ZnS04• aq подвергают электролизу, при котором восстанавливается цинк и регенерируется кислота для повторного использования в качестве растворителя ZnO из огарка.
Обжиг цинковых концентратов был и остается основным способом окисления сульфидного сырья.
Как видно из предельно упрощенной технологической схемы каждого способа (см. рис. 77 и 78), получение цинка из минерального сырья требует ряда последовательных стадий (переделов). Но реальная технология получения цинка гораздо сложней. Это объясняется двумя основными причинами: 1) необходимостью отделять от цинка целый ряд сопутствующих ему в сырье компонентов; 2) необходимостью физически подготавливать сырье и промежуточные продукты для последующих стадий переработки.
При более детальном рассмотрении способов, можно выделить их разновидности, которые в основном различаются способом и устройством для восстановления и дистилляции цинка: 1) в горизонтальных ретортах; 2) в вертикальных ретортах; 3) в электрических печах; 4) в шахтных печах. Для разных аппаратов требуется разное состояние и свойства агломерата, что обусловливает специфику способов агломерации.
Гидрометаллургическое получение цинка (рис, 76) имеет разновидности, различающиеся в основном способами выщелачивания огарка: 1) растворение только легко растворимых форм цинка (остаток от выщелачивания - цинковый кек - перерабатывают пирометаллургически); 2) полное растворение всех форм цинка из огарка. Эти разновидности технологии различаются способами разделения цинка и железа, что имеет принципиальное значение в гидрометаллургии цинка. При обжиге концентратов значительная часть цинка связывается с железом в труднорастворимый феррит ZnFe2O4. При неполном выщелачивании цинка из огарка феррит цинка остается в кеке. Благодаря этому отделяют основную часть железа от цинка, не переводя железо в раствор. При полном выщелачивании цинка из огарка железо переходит в раствор, а затем избирательно осаждается. Оборудование для различных вариантов гидрометаллургии цинка в основном однотипное и конструктивно простое. Если сопоставить пирометаллургическое и гидрометаллургическое получение цинка, то можно сделать следующее заключение. Главное и немаловажное преимущество пирометаллургии состоит в компактности основной аппаратуры благодаря высокой удельной производительности аппаратов. Недостатками метода являются высокие расходы на топливо, ремонт оборудования, подготовку материалов к основным операциям, обезвреживание технологических газов перед выбросом в атмосферу.
Гидрометаллургическое получение цинка имеет ряд преимуществ перед пирометаллургическим: 1) большие возможности полно и комплексно перерабатывать сырье; 2) с большой рентабельностью применим к бедному и сложному сырью; 3) используется удобный вид энергии - электрический; 4) требует меньших удельных затрат энергии; 5) легче осуществимы природоохранные меры; 6) лучше условия труда; 7) доступней механизация и автоматизация процессов; 8) получается цинк лучшего качества.
Перечисленные преимущества гидрометаллургии цинка особенно важны в современных условиях, когда обострился энергетический кризис, ужесточились экологические ограничения, потребовалось улучшение условий труда и сокращение ручного труда, возросла необходимость полно и комплексно использовать сырье, которое становится бедней, сложней и дороже (стоимость цинкового концентрата достигает 65 % от общих затрат на производство цинка).
Исторически сложилось, так, что промышленное получение цинка началось пирометаллургическим способом и осуществлялось в горизонтальных ретортах. При всем несовершенстве этого способа более ста лет он был единственным. Гораздо позже, когда появилась возможность осуществить промышленный электролиз, начали применять гидрометаллургический способ.
В металлургии цинка в качестве исходных материалов используют не только минеральное и вторичное сырье, но также и цинксодержащие продукты других производств: шлаки и пыли металлургических производств свинца, меди, олова, чугуна. Эти продукты гораздо бедней по цинку, чем цинковые концентраты.
Цинковистые шлаки до недавнего времени считались отвальными продуктами, хотя в них содержится значительное количество цинка, особенно в свинцовых шлаках (10—17 % Zn).
Жидкие шлаки перерабатывают путем продува их пылегазовой смесью воздуха с углеродсодержащими материалами (пылеуголь, мазут и др.). Этот способ называют фьюмингованием. Из твердых шлаков окисленный цинк восстанавливают коксиком в трубчатых вращающихся печах - вельц-печах. Этот способ называют вельцеванием. Вельцевание применяют также для переработки цинкового кека (остаток от неполного выщелачивания цинка из огарка). Цинк, отогнанный при фьюминговании и вельцевании, конденсируют в виде ZnO, а возгоны перерабатывают гидрометаллургически.
Цинковые кеки являются массовым продуктом гидрометаллургии цинка. Переработка цинковых кеков в мире так распределяется по методам, % гидрометаллургическим (полное выщелачивание цинка) 55; свинцовой шахтной плавкой с фьюмингованием шлаком ~ 25 (в основном заводы США и Канады); вельцеванием и электротермией ~ 20 (заводы Японии). В России основным способом переработки кеков пока остается вельцевание.
Цинксодержащие пыли металлургических производств являются ценным сырьем: кроме цинка, в них содержится ряд редких металлов (In, Se, Те,, Ge и др.). Но вместе с ценными металлами в пылях концентрируются и вредные примеси (As, Sb, Cl, F). Переработка пылей должна быть комплексной. Это сложная технологическая задача, которая не нашла пока оптимального решения.