Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матем анализ 3 семестр вероятность.doc
Скачиваний:
23
Добавлен:
18.11.2018
Размер:
1.9 Mб
Скачать

39

Галкин С.В.

Краткий курс математического анализа

в лекционном изложении

для студентов МГТУ им. Н. Э. Баумана

(третий семестр)

вероятность

Москва 2005

Лекция11.

Вероятность

В теории вероятностей рассматриваются такие явления или опыты, конкретный исход которых не определяется однозначно условиями опыта (случаен), но по результатам большого числа экспериментов в среднем может быть предсказан (свойство статистической устойчивости).

Элементарным событием (элементарным исходом) называется любое событие - исход опыта, которое нельзя представить в виде объединения других событий. Так как исход опыта случаен, то и любое элементарное событие случайно, далее будем говорить просто о событиях, не подчеркивая их случайность.

Пространством элементарных событий (исходов) называется множество всех элементарных событий (исходов). {1, …n}, если в результате опыта обязательно наступает какой-либо из элементарных исходов и только один (один исход исключает любой другой). Пространство элементарных событий может содержать конечное, счетное и даже бесконечное множество элементарных событий.

Случайным событием (событием) называется подмножество пространства элементарных событий. Любое множество – это совокупность элементов. Элементами события являются элементарные события, образующие это событие.

Пример. Бросается одна монета, она может упасть гербом (1=Г) или решкой (1=Р). =(Г,Р).

Пример. Бросаются две монеты  = {(Г, Г), (Г,Р), (Р,Г), (Р,Р)}

Пример. Капля дождя падает на прямоугольную площадку.

= {(x,y), a<x<b, c<y<d}

Достоверное событие – событие, которое всегда происходит в результате данного опыта, оно содержит все элементарные события и обозначается .

Невозможное событие – событие, которое не может произойти в результате данного опыта, оно не содержит элементарных событий и обозначается .

Действия над событиями.

События определены как множества, поэтому действия над ними аналогичны действиям над множествами и хорошо иллюстрируются диаграммами Венна.

Пространство будем обозначать прямоугольником, элементарное событие – точкой прямоугольника, а каждое событие – подмножеством точек этого прямоугольника. Результат операции над событиями будем заштриховывать.

Пусть выбираются карты из колоды карт. Событие А – выбор червонной карты, событие В – выбор десятки

Суммой двух событий А и В называется событие

С = А + В (или С = АВ), состоящее из элементарных событий, принадлежащих либо А, либо В.

Пример.

С = А + В – выбор любой червонной карты или любой десятки

Произведением двух событий А и В называется событие D = AB (или D = AB), состоящее из элементарных событий, принадлежащих и А и В.

Пример. АВ – выбор десятки червей

Разностью двух событий А и В называется событие

А\В, состоящее из элементарных событий, принадлежащих А и не принадлежащих В.

Пример. А\В –выбор любой червонной карты, кроме десятки

Классификация событий

Событие, состоящее из всех элементарных событий, не содержащихся в А, обозначим и будем называть противоположным событием.

Пример. А –выбор червонной карты;

–выбор любой карты другой масти.. =

Два события А и В будем называть совместными, если каждое из них содержит хотя бы одно общее элементарное событие, т.е если АВØ.

Пример. А выбор червонной карты и

В – выбор десятки – совместные события, так как

АВ = выбор червонной десяткиØ

Если общих элементарных событий у событий А и В нет, то их будем называть несовместными событиями

(АВ = Ø).

Пример. А – выпадение четного числа очков А = {2, 4, 6}.

В – выпадение нечетного числа очков В = {1, 3, 5}

Очевидно, что А и В несовместны.

Полная группа событий – это совокупность n событий А1, А2, …, Аn, одно из которых обязательно произойдет, т.е.

Свойства операций над событиями

1. =Ø 6. А = А

2. А + А = А 7. А Ø = Ø Коротко. Если А В, то

3. А А = А 8 = А А + В = В

4. А + = 9. А В = А

5. А + Ø = А 10. = Ø

Коммутативность операций

А + В = В + А; А В = В А

Ассоциативность операций

А + (В + С) = (А + В) + С = А + В + С А(В С) = (А В) С = А В С

Дистрибутивность операции сложения относительно умножения

А (В + С) = А В + А С

Дистрибутивность операции умножения относительно сложения

А + (В С) = (А + В)(А + С)

Пример. Вычислим (A+B)(A+C)=AA+BA+AC+BC=A+BC.

В самом деле, BAA, ACA, AA=A, тогда AA+BA=A, A+AC=A.

Правило двойственности (теорема де Моргана)

Для всякого сложного события, выраженного через сумму и произведение (даже счетного количества) событий, противоположное событие может быть получено путем замены событий им противоположными и замены знака произведения на знак суммы, а знака суммы на знак произведения, при оставлении порядка операций неизменным

Пример.