
- •О. В. Шишов технология разработки программных продуктов
- •1. Программы и программирование
- •1.1 Основные определения
- •1.2. Классификация программ и различные виды программирования
- •1.3. Категории специалистов, занятых разработкой и эксплуатацией программ
- •2. Жизненный цикл программного обеспечения
- •2.1 Основные этапы жизненного цикла и их взаимосвязь
- •2.2 Стратегии и модели жизненного цикла
- •3. Качество по
- •3.1 Критерии оценки качества по
- •3.2 Методы оценки качества программного средства
- •4. Надежность программных продуктов
- •4.1 Надежность и виды отказов
- •4.2 Надежность и правильность программы
- •4.3. Вероятностный подход к оценке надежности
- •4.4 Факторы надежности
- •4.5 Приемы надежного программирования
- •6.2. Стандарты технологии создания программных продуктов
- •6.3. Основные этапы технологического процесса разработки программ
- •7. Структурное проектирование программных продуктов
- •7.1. Модули. Сцепление и связность модулей
- •7.2. Структура программных продуктов
- •7.3. Методы структурного программирования
- •8. Алгоритмическое представление задачи программирования
- •8.1. Свойства алгоритмов
- •8.2. Формы записи алгоритмов
- •8.3. Базовые алгоритмические структуры
- •9. Языки программирования
- •9.1. Основные понятия и элементы языков программирования
- •9.2. Классификация языков программирования
- •9.3. Развитие языков программирования
- •10. Пользовательский интерфейс
- •10.1. Типы интерфейсов
- •10.2. Этапы разработки пользовательского интерфейса
- •10.3. Критерии оценки интерфейса пользователем
- •11. Порядок работы эвм при выполнении программ. Трансляторы, интерпритаторы, компиляторы
- •12. Оптимизация программ
- •13. Отладка и тестирование программного обеспечения
- •13.1. Классификация неисправностей и ошибок в программе
- •13.2. Порядок и способы отладки и тестирования программ
- •13.3. Методы тестирования
- •13.4. Требования и рекомендации по тестированию программ
- •13.4. Программирование «с защитой от ошибок»
- •14. Аттестация программного средства
- •15. Сопровождение по
- •16. Защита программных продуктов
- •16.1. Обеспечение защищенности программных средств
- •16.3. Правовые методы защиты программных продуктов
- •17. Документорование программных продуктов
- •17.1. Виды программных документов
- •17.2. Содержание документации по еспд
- •17.3. Стиль оформления программы
- •Содержание
4.2 Надежность и правильность программы
Разрабатываемая ПС может обладать различной степенью надежности. Как измерять эту степень? Так же как в технике, степень надежности можно характеризовать вероятностью работы ПС без отказа в течении определенного периода времени. Однако в силу специфических особенностей ПС определение этой вероятности наталкивается на ряд трудностей по сравнению с решением этой задачи в технике.
Как известно, вопрос надежности для аппаратуры хорошо разработан. Источником ненадежности аппаратуры служат объективные факторы, неподвластные человеку (скачки напряжения питания, альфа-частицы и т.д.), поэтому человечество давно смирилось с мыслью о том, что абсолютно надежной аппаратуры не бывает и можно говорить лишь о степени надежности, выражаемой в каких-то единицах (например, среднее время между двумя последовательными отказами). Источник же ненадежности программ ошибки, которые делают люди, их создающие и использующие, поэтому кажется, что проблема лишь в том, чтобы заставить (или научить) их работать "правильно".
По существу, все меры по обеспечению надежности программ направлены на то, чтобы свести к минимуму (если не исключить вообще) ошибки при разработке и как можно раньше их выявить и устранить после изготовления программы. Следует заметить, что безошибочные программы, конечно же, существуют, однако современные программные системы слишком велики и почти неизбежно содержат ошибки. Хотя это обстоятельство отмечается многими авторами и известно любому программисту-практику, существует, по-видимому, некий психологический барьер, не позволяющий признать факт наличия ошибок в программном обеспечении неизбежной реальностью: поскольку не существует точного критерия, позволяющего определить максимальный размер свободной от ошибок программы, всегда остается надежда, что в данной конкретной программной системе их не осталось.
Представление о том, что число ошибок в программе можно считать наиболее естественной мерой надежности не верно. Как показывают приводимые ниже соображения, количество ошибок в программе не имеет никакого отношения к ее надежности:
1. Число ошибок в программе – величина "ненаблюдаемая", наблюдаются не сами ошибки, а результат их проявления.
2. Неверное срабатывание программы может быть следствием не одной, а сразу нескольких ошибок.
3. Ошибки могут компенсировать друг друга, так что после исправления какой-то одной ошибки программа может начать "работать хуже".
4. Надежность характеризует частоту проявления ошибок, но не их количество; в то же время хорошо известно, что ошибки проявляются с разной частотой: некоторые ошибки остаются невыявленными после многих месяцев и даже лет эксплуатации, но, с другой стороны, нетрудно привести примеры, когда одна единственная ошибка приводит к неверному срабатыванию программы при любых исходных данных, т.е. к нулевой надежности.
Наконец, важно подчеркнуть, что, с точки зрения надежности, в результате исправления ошибки или любой другой коррекции получается новая программа с другим, чем до коррекции, показателем надежности.