
- •Состав газов
- •Теплотворная способность газов
- •Понятие о процессе сжигания газов
- •Способы сжигания газов
- •Назначение, состав. И классификация магистральных трубопроводов
- •Значения точек росы (в °с) влажных природных углеводородных газов
- •5.1. Электроприводиые и газотурбинные кс
- •1. Особенности использования сжиженных газов
- •2. Схема снабжения сжиженными газами
- •4. Установки для использования сжиженных газов
- •1. Способы покрытия неравномерностей газопотребления
- •2. Покрытие месячных (сезонных) неравномерностей
- •Электроснабжение
- •1.1. Общие сведения
- •1.2. Электрические параметры электроэнергетических систем
- •1.3. Напряжения электрических сетей
- •Номинальные напряжения электрических систем
- •1.4. Управление электроэнергетическими системами
- •1.5. Структура потребителей и понятие о графиках их электрических нагрузок
- •1.6. Преимущества объединения электроэнергетических систем
- •1.7. Организация взаимоотношений между энергосистемой и потребителями
- •Глава 3 конструктивное выполнение электрических сетей
- •3.1. Общие сведения
- •3.2. Воздушные линии
- •3.2.1. Общие сведения
- •3.2.2. Провода воздушных линий
- •3.2.3. Изоляторы воздушных линий
- •3.2.4. Опоры воздушных линий
- •3.3. Кабельные линии
- •3.3.1. Конструкции кабелей
- •3.3.2. Способы прокладки кабелей напряжением 6... 10 кВ
- •3.4. Токопроводы напряжением 6...35 кВ
- •3.5. Конструктивное выполнение цеховых сетей напряжением до 1 кВ
- •3.5.1. Общие сведения
- •3.5.2. Электропроводки
- •2.7. Определение расчетных электрических нагрузок на различных ступенях системы электроснабжения
- •Глава 8 характеристики графиков нагрузки элементов систем электроснабжения
- •8.1. Графики электрических нагрузок
- •8.1.1. Индивидуальные графики нагрузок
- •8.2. Групповые графики электрических нагрузок
- •8.4. Показатели графиков электрических нагрузок
- •8.4.1. Коэффициент использования
- •8.4.2. Коэффициент включения
- •8.4.3. Коэффициент загрузки
- •8.4.4. Коэффициент формы графика нагрузки
- •8.4.5. Коэффициент заполнения графика
- •8.4.6. Коэффициент энергоиспользования
- •8.4.7. Коэффициент одновременности максимумов нагрузки
- •Глава 19 качество электроэнергии в системах электроснабжения объектов
- •19.1. Общие сведения
- •19.2. Показатели качества электроэнергии
- •19.2.1. Основные и дополнительные показатели качества электроэнергии
- •19.2.2. Отклонение частоты и причины его возникновения
- •19.2.3. Отклонение напряжения
- •19.2.4. Колебания напряжения
- •19.2.5. Несинусондальность напряжения
- •Значения коэффициента искажения синусоидальности кривой напряжения, %
- •19.2.6. Несимметрия напряжения
- •19.2.7. Провал напряжения
- •19.2.8. Импульсное напряжение
- •19.2.9. Временное перенапряжение
- •19.3. Влияние качества электроэнергии на работу электроприемников
- •19.3.1. Влияние отклонения частоты в энергосистеме на работу электроприемников
- •19.3.2. Влияние отклонения напряжения на работу электроприемников
- •19.3.3. Статические характеристики асинхронных двигателей
- •Регулирующие эффекты нагрузки приемников электроэнергии
- •19.3.4. Влияние колебаний напряжения на работу электроприемников
- •19.3.5. Влияние несимметрии напряжения на работу электроприемников
- •19.3.6. Влияние несинусоидальности напряжения на работу электроприемников
- •19.4. Регулирование показателей качества напряжения в системах электроснабжения объектов
- •19.4.1. Задачи регулирования напряжения при симметричных режимах
- •19.4.2. Выбор схем электроснабжения для улучшения качества электроэнергии
- •Теплоснабжение предприятий
- •2.4. Тепловая мощность системы горячего водоснабжения
- •2.6. Общая тепловая мощность объекта
- •3.2. Основные принципы проектирования систем теплоснабжения
- •4.1. Централизованное теплоснабжение от электростанций (теплофикация)
- •4.2. Централизованное теплоснабжение от районных котельных
- •4.3. Автономное и местное теплоснабжение
- •4.4. Теплогенераторы
- •5.1. Способы прокладки трубопроводов тепловых сетей
- •5.2. Дренаж тепловых сетей
- •5.3. Сооружения на тепловых сетях
Электроснабжение
1.1. Общие сведения
В настоящее время нельзя представить себе жизнь и деятельность современного человека без применения электричества. Электричество уже давно и прочно вошло во все отрасли народного хозяйства и в быт людей. Основное достоинство электрической энергии - относительная простота производства, передачи, дробления и преобразования.
В системе электроснабжения объектов можно выделить три вида электроустановок:
по производству электроэнергии - электрические станции;
по передаче, преобразованию и распределению электроэнергии -электрические сети и подстанции;
по потреблению электроэнергии в производственных и бытовых нуждах - приемники электроэнергии.
Электрической станцией называется предприятие, на котором вырабатывается электрическая энергия. На этих станциях различные виды энергии (энергия топлива, падающей воды, ветра, атомная и др.) с помощью электрических машин, называемых генераторами, преобразуются в электрическую энергию.
В зависимости от используемого вида первичной энергии все существующие электрические станции разделяются на следующие основные группы: тепловые, гидравлические, атомные, ветряные и др.
Приемником электроэнергии (электроприемником, токоприемником) называется электрическая часть производственной установки, получающая электроэнергию от источника и преобразующая ее в механическую, тепловую, химическую, световую энергию, в энергию электростатического и электромагнитного поля.
По технологическому назначению приемники электроэнергии классифицируются в зависимости от вида энергии, в который данный приемник преобразует электрическую энергию: электродвигатели приводов машин и механизмов; электротермические установки; электрохимические установки; установки электроосвещения; установки электростатического и электромагнитного поля, электрофильтры; устройства искровой обработки, устройства контроля и испытания изделий (рентгеновские аппараты, установки ультразвука и т.д.). Электроприемники характеризуются номинальными параметрами: напряжением, током, мощностью и др.
Совокупность электроприемников производственных установок цеха, корпуса, предприятия, присоединенных с помощью электрических сетей к общему пункту электропитания, называется электропотребителем.
Совокупность электрических станций, линий электропередачи, подстанций, тепловых сетей и приемников, объединенных общим и непрерывным процессом выработки, преобразования, распределения тепловой и электрической энергии, называется энергетической системой.
Единая энергетическая система (ЕЭС) объединяет энергетические системы отдельных районов, соединяя их линиями электропередачи (ЛЭП).
Часть энергетической системы, состоящая из генераторов, распределительных устройств, повышающих и понижающих подстанций, линий электрической сети и приемников электроэнергии, называют электроэнергетической системой.
Электрической сетью называется совокупность электроустановок для передачи и распределения электроэнергии, состоящая из подстанций и распределительных устройств, соединенных линиями электропередачи, и работающая на определенной территории.
Электрическая сеть объекта электроснабжения, называемая системой электроснабжения объекта, является продолжением электрической системы. Система электроснабжения объекта объединяет понижающие и преобразовательные подстанции, распределительные пункты, электроприемники и ЛЭП.
Прием, преобразование и распределение электроэнергии происходят на подстанции - электроустановке, состоящей из трансформаторов или иных преобразователей электроэнергии, распределительных устройств, устройств управления, защиты, измерения и вспомогательных устройств.
Распределение поступающей электроэнергии без ее преобразования или трансформации выполняется на распределительных подстанциях (РП).
Электрические сети подразделяют по следующим признакам.
1. Напряжение сети. Сети могут быть напряжением до1 кВ - низковольтными, или низкого напряжения (НН), и выше 1 кВ - высоковольтными, или высокого напряжения (ВН).
2.
Род
тока. Сети
могут быть постоянного и переменного
тока. Электрические сети выполняются
в основном по системе трехфазного
переменного тока, что является наиболее
целесообразным, поскольку при этом
может производиться трансформация
электроэнергии. При большом числе
однофазных приемников от трехфазных
сетей осуществляются однофазные
ответвления. Принятая частота переменного
тока в ЕЭС России равна 50 Гц.
Рис.
1.1. Условные обозначения элементов
электрической системы
Рис. 1.2. Схема электрической системы
4. Конструктивное выполнение сетей. Линии могут быть воздушными, кабельными и токопроводами. Подстанции могут быть открытыми и закрытыми.
Для графического изображения электроэнергетических систем, а также отдельных элемен- тов и связи между элементами используют общепринятые условные обозначения. На рис. 1.1 показаны условные обозначения основных элементов электроэнергетической системы.
Примерная схема относительно простой электроэнергетической системы приведена на рис. 1.2. Здесь электрическая энергия, вырабатываемая на двух электростанциях различных типов: тепловой электростанции (ГЭС) и теплоэлектроцентрали (ТЭЦ), - подводится к потребителям, удаленным друг от друга. Для того чтобы передать электроэнергию на расстояние, ее предварительно преобразовывают, повышая напряжение трансформаторами. У мест потребления электроэнергии напряжение понижают до нужной величины. Из схемы можно понять, что электроэнергия передается по воздушным линиям. Схема, приведенная на рис. 1.2, представлена в однолинейном изображении. В действительности элементы системы, работающие на переменном токе, имеют трехфазное исполнение. Однако для выявления структуры системы и анализа ее работы нет необходимости в ее трехфазном изображении, вполне достаточно воспользоваться ее однолинейным изображением.