Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Калоша.doc
Скачиваний:
24
Добавлен:
16.11.2018
Размер:
2.71 Mб
Скачать

Билет 21 и 22

Равномерная непрерывность функции.

Определение непрерывности, точки разрыва функции.

Определение 1:

Пусть f(x) определена в некоторой окрестности точки а. f(x) называется непрерывной в точке а если f(x) = f(а)

Примеры:

f(x) = sin x непрерывна в точке х =0 , так как sin x = 0, и sin 0 = 0, то есть sin x = sin 0.

Рациональная функция f(x) = непрерывна в любой точке а, в которой (а)  0, так как было доказано, что = ((а)  0).

Замечаение: Так как х = а, то условие непрерывности функции можно записать в виде

f(x) = f(x).

Таким образом, непрерывность f(x) в точке а означает, что символы и f можно менять местами.

Определение 2.

f(x) называетмя непрерывной в точке а, если   > 0   > 0: | f(x) - f(а) | <  при | х - а | < .

Пусть f(x) непрерывна в точке а и f(а) > 0. Возьмём  = f(a). По определнию 2

  > 0: | f(x) - f(a) | < f(а) при | х - а | < , то есть - f(a) < f(x) - f(a) < f(a) в - окрестности точки а.

Из последнего неравенства следует, что f(x) > 0 в - окрестности точки а.

Итак, если f(x) положительна и непрерывна в точке а, то она остается положительной в некоторой окрестности точки а. Это свойство называется устойчивостью знака непрерывной функции.

Пусть f(x) определена на [a, a + ). Функция f(x) называется непрерывной в точке а справа, если f(x) = f(а). (то есть f(а + 0) = f(а)).

Аналогично определяется непрерывность в точке а слева.

Пример:

f(x) = [x].

(рисунок)

 целого n: f(n - 0) = n - 1, f(n + 0) = n, f(n) = n, то есть, f(n + 0) = f(n)  f(n - 0).

Следовательно , в целочисленных точках эта функция непрерывна только справа. В остальных точках- и справа и слева.

Теорема

Если f(x) непрерывна в точке а справа и слева, то она непрерывна в точке а.

Доказательство:

По условию f(а + 0) = f(а) и f(а - 0) = f(а).

Отсюда по теореме 2.1 следует, что  f(x) = f(а), а это и означает, что f(x) непрерывна в точке а.

Теорема доказана.

2. Если ф-ция f(x) дифференцируема в точке x0, то f(x)-непрерывна в точке x0.

3. Ф-ция f(x) -непрерывна в точке x0, если lim(f(x))=f(x0), при x→x0

+Арифм действия с ф-циями связаны с пределами ф-ций, равными A и B

Точки разрыва функции.

Определение: Предельные точки области определения функции, в которых эта функция не является непрерывной, называются точками её разрыва.

Примеры:

1) f(x) = [x].

x = n (целое)-точка разрыва.

2) D(x) = (функция Дирихле).

D(x) имеет разрыва в каждой точке числовой прямой, так как  точки а D(x) не существует.

3) f(x) = xD(x)

f(x) непрерывна в точке х = 0, так как f(x) = 0 = f(0).

f(x) разрывна во всех остальных точках, так как  а  0 f(x) не существует- (докажите самостоятельно).

Классификация точек разрыва.

1)Устранимый разрыв.

Точка а называется точкой устранимого разрыва функции f(x), если  f(x), но

f(x)  f(a) , либо в точке а функция f(x) вообще не определена.

Пример:

f(x) = . Будет доказано, что = 1, но в точке х = 0 функцияне определена, тем самым х = 0 -точка устранимого разрыва этой функции.

Если положить f(x) =, то f(x) станет непрерывной в точке х = 0, то есть разрыв будет устранён.

2) Разрыв первого рода.

Точка а называется точкой разрыва первого рода функции f(x), если  f(x) и f(x), но f(x)  f(x).

Пример:

f(x) = [x]

x = n (целое) - точки разрыва первого рода этой функции.

3) Разрыв второго рода.

Точка а называется точкой разрыва второго рода функции f(x), если в этой точке не существует хотя бы один из односторонних пределов.

Примеры:

1) f(x) =, х = 0 - точка разрыва второго рода, так как f(+0) = +, f(-0) = -.

2) Функция Дирихле D(x)-любая точка является точкой разрыва второго рода.

Функция f(x) называется непрерывной на множестве Х, если она непрерывна в каждой точке этого множества.

В частности, f(x) непрерывна на сегменте [a, b] (a < b), если она непрерывна в каждой внутренней точке сегмента, непрерывна в точке а справа и в точке b слева.

Пример:

f(x) =непрерывна на любом сегменте, в точках которого (х) не обращается в нуль.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]