- •1.Строение электронных оболочек атома. Квантовые числа, s-, p-, d-, f- состояния электронов. Принцип Паули. Правило Гунда. Электронные формулы и энергетические ячейки.
- •Понятие о волновых свойствах электрона. Уравнение л. Де Бройля. Электронные облака s- и p- электронов.
- •Энергия ионизации атомов, энергия сродства к электрону, электроотрицательность.
- •5) Порядок заполнения электронных слоев.
- •Краткая характеристика основных видов связи.
- •7) Ионная связь. Механизм возникновения, валентность элементов в ионных соединениях.
- •8.Ковалентная связь.
- •9) Направленность ковалентной связи. Строение молекул h2, Cl2, hCl, h2o, h2s, nh3, ch4, bCl3, BeCl2. Гибридизация электронных облаков, s и p связь. Строение молекул этилена, ацетилена.
- •10) Полярная связь. Π –полярная молекула.
- •Понятие о методе электронных орбиталей.
- •13) Виды межмолекулярного взаимодействия. Потенциал Леннарда-Джонса.
- •14) Основные агрегатные состояния вещества. Характеристика газообразного, жидкого и твердого состояний. Дальний и ближний порядок.
- •16) Кристалл. Монокристалл. Поликристаллическое тело. Свойства веществ в кристаллическом состоянии. Анизотропия. Закон постоянства междугранных углов.
- •17).Классификация кристаллов.
- •19) Плотность упаковки частиц в кристаллах. Плотнейшие упаковки. Тетраэдрические и октаэдрические междоузлия.
- •20) Типы кристаллических решеток по видам связи. Ионные, атомные и молекулярные решетки. Металлические решетки.
- •21) Основные виды кубических структур.
- •22) Полиморфизм, аллотропия, энантиоморфизм, Изоморфизм.
- •23) Реальные кристаллы. Точечные и протяженные дефекты структуры. Влияние дефектов структуры на свойства твердых тел.
- •24) Стехиометрические законы химии и особенности их применения в кристаллах.
- •25) Предмет и задачи химической термодинамики. Система, фаза, компонент, параметры. Функции состояния: внутренняя энергия и энтальпия.
- •27) I начало термодинамики. Истинная и средняя теплоемкость. Соотношение между Cp и c для идеального газа.
- •35) Изотерма химической реакции. Стандартное изменение свободной энергии. Изобара и изохора.
- •36) Фазовые превращения. Уравнение Клапейрона-Клазиуса. Теплота фазового превращения.
- •37) Тепловая теорема Нернста. Постулат Планка. Расчёт абсолютного значения энтропии.
- •55) Явление катализа. Катализаторы и ингибиторы. Механизм гомогенного и гетерогенного катализа.
- •56) Понятие "р-р." Разбавленные, концентрированные, насыщенные, пересыщенные растворы. Способы выражения концентрации растворов.
- •57).Физические и Химические теории р-ров. Сольватация. Теплота растворения. Растворение тв. Тел в жидкости. Ур-е Шредера. Растворимость жидкостей в жидкостях.
- •58) Растворимость газов в жидкостях. Закон Генри и Дальтона. Ур-е Сивертса. Закон распределения. Практическое применение закона распределения.
- •60) Первый и второй законы Рауля. Определение молекулярных масс различных веществ (эбулио и криоскопия).
- •62). Слабые электролиты. Степень диссоциации, определение ее через электропроводность. Константа диссоциации. Связь константы диссоциации и степени диссоциации (закон распределения Оствальда)
- •63) Сильные электролиты. Ионные атмосферы. Кажущаяся степень диссоциации. Активность и коэффициент активности. Произведение растворимости.
- •64) Электролитическая диссоциация воды. Ионное произведение воды Водородный показатель.
- •Гидролиз солей.
- •68)Медно-цинковый гальванический элемент. Процессы на электродах. Эдс, как алгебраическая сумма скачков потенциалов. Медно-цинковый гальванический элемент – элемент Якоби-Даниэля.
- •70) Водородный электрод.
- •Типы электродов и цепей.
- •73) Законы электролиза.….1-й закон:
ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ ПО КУРСУ ФИЗИЧЕСКОЙ ХИМИИ
1.Строение электронных оболочек атома. Квантовые числа,s-, p-,d-,f-состояния электронов. Принцип Паули. Правило Гунда. Электронные формулы и энергетические ячейки.
2.Понятие о волновых свойствах электрона. Уравнение Л. де- Бройля. Электронные облака s- и p-электронов.
3.Энергия ионизации атомов, энергия сродства к электрону, электроотрицательность.
4.Периодический закон и периодическая система элементов Д.И.Менделеева. Ряды, периоды, группы и подгруппы. Переходные элементы. Валентность по кислороду и водороду. Металлы, неметаллы, элементарные полупроводники в системе элементов. Современная формулировка периодического закона.
5.Порядок заполнения электронами энергетических подуровней и уровней. Ограничение принципа Паули. Правила Клечковского. Проскоки(провалы) электронов. Семейства элементов.
6.Краткая характеристика основных видов химической связи.
7.Ионная связь. Механизм возникновения, валентность элементов в ионных соединениях.
8.Ковалентная связь. Основные положения метода валентных связей. Валентность в ковалентных соединениях. ’’Возбужденное’’ состояние атомов. Энергия связи.
9.Направленность ковалентных связей. .Строение молекул Н2,Сl2,НСl, H2O, H2S, NH3, CH4, BCl3, BeCl2. Гибридизация электронных облаков. и -связи. Строение молекул этилена, азота.
10.Поляризованная ковалентная связь. Дипольный момент молекулы. Полярность связей и полярность молекул. Водородная связь. Аномальные свойства воды.
12.Донорно-акцепторная связь. Комплексные соединения, механизм их возникновения. Константа нестойкости. Двойные соли.
13.Виды межмолекулярного взаимодействия. Потенциал Леннарда-Джонса.
14.Основные агрегатные состояния вещества. Характеристика газообразного, жидкого и твердого состояний. Дальний ближний порядок.
15.p-Т-диаграмма.Кристаллическое,стеклообразное и аморфное состояние вещества. Закон Коновалова-Гиббса.
16.Кристалл,монокристалл,поликристаллическое тело. Свойства веществ в кристаллическом состоянии. Анизотропия. Закон постоянства междугранных углов.
17.Классификация кристаллов по симметрии внешней формы.Элементы и операции симметрии .Классы кристаллов. Классификация кристаллов по симметрии внутренней структуры. Сингонии. Пространственная и кристаллическая решетки.
18.Сложные пространственные решетки на примере решеток кубической сингонии. Кратность, базис, координационное число.
19.Плотность упаковки частиц в кристаллах. Плотнейшие упаковки. Тетраэдрические и октаэдрические междуузлия.
20.Типы кристаллических решеток по видам связи. Ионные, атомные и молекулярные решетки. Металлические решетки.
21.Основные виды кубических структур.
22.Полиморфизм,аллотропия,энантиоморфизм.Изоморфизм.
23.Реальные кристаллы. Точечные и протяженные дефекты структуры. Влияние дефектов структуры на свойства твердых тел.
24.Стехиометрические законы химии и особенности их применения в кристаллах.
25.Предмет и задачи химической термодинамики. Система, фаза, компонент, параметры. Функции состояния: внутренняя энергия и энтальпия.
26.Теплота и работа.Обратимый процесс. Работа различных процессов. Максимальная работа. Теплота изобарического, изохорического изотермического процессов. Круговой процесс.
27.Первое начало темодинамики. Истинная и средняя теплоемкость. Соотношение между Cp и Сv для идеального газа.
28.Закон Гесса. Первое и второе следствия из закона Гесса. Теплота горения. Стандартные условия. Стандартная энтальпия образования вещества.
29.Зависимость теплового эффекта процесса от температуры (закон Кирхгоффа).ПодсчетыН и U.Приближения при расчетах.
30.Второе начало термодинамики. Понятие энтропии. Термодинамическая вероятность. Приведенное тепло.Неравенство Клаузиуса.
31.Свободная энергия Гиббса и свободная энергия Гельмгольца. Связанная энергия. Условия самопроизвольного протекания процесса при постоянных р и Т и при постоянных V и Т.
32.Зависимость функций F и G от температуры (урвнение Гиббса-Гельмгольца).
34. Константы равновесия гомогенных и гетерогенных реакций. Различные способы выражения константы равновесия и соотношения между ними.
35. Изотерма химической реакции. Стандартное изменение свободной энергии. Изобара и изохора химической реакции.
36. Фазовые превращения. Уравнение Клапейрона- Клаузиуса. Теплота фазового превращения.
37. Тепловая теорема Нернста. Постулат Планка. Расчет абсолютного значения энтропии.
38. Методы экспериментального определения и методы расчета термодинамических функций и констант равновесия. Приближения Улиха.
39. Сущность физико-химического анализа. Число составных частей компонентов системы. Правило фаз. Диаграмма состояния воды.
40. Термографический анализ: кривые нагревания и охлаждения. принципы построения диаграмм плавкости.
41. Диаграмма плавкости бинарной системы с эвтектикой. Правило «рычага».
42. Диаграмма плавкости бинарной системы с неограниченными твердыми растворами. Правило «рычага». Ликвидация, отжиг.
43. Диаграммы плавкости бинарной системы с ограниченными твердыми растворами – с эвтектикой и с перитектикой.
44. Диаграммы плавкости бинарной системы с устойчивым и с неустойчивым химическими соединениями.
45. Дальтониды и бертоллиды. Фазы постоянного и переменного состава.
46. Понятие о тройных диаграммах плавкости.
47. Истинная и средняя скорость реакций. Закон действия масс. Активные молекулы. Физический смысл константы скорости.
48. Молекулярность и порядок реакции. Интегрирование кинетических уравнений реакций первого, второго и третьего порядка. Период полураспада реакций первого и второго порядка.
49. Кинетическая классификация реакций по степени сложности. Обратимые и необратимые реакции. Связь константы равновесия с константами скоростей.
50. зависимость скорости реакций от температуры. Правило Вант-Гоффа. Эмпирической уравнение Аррениуса. Энергия активации.
51. Аналитический вывод уравнения Аррениуса. Физический смысл энергии активации, графический и аналитический расчеты этой энергии.
52.Принцип подвижного равновесия (принцип Ле-Шателье). Разобрать на конкретных примерах.
53. Кинетика гетерогенных реакций. Много стадийность. Диффузионная и кинетическая области протекания процессов.
54. Скорость диффузии. Уравнение стационарной диффузии. Коэффициент массопередачи. Скорость гетерогенной химической реакции первого порядка при стационарном протекании. Скорость растворения твердого тела в жидкости.
55. Явление катализа. Катализаторы и ингибиторы. Механизм гомогенного и гетерогенного катализа.
56. Понятие «раствор». Разбавленные, концентрированные, насыщенные, пересыщенные растворы. Способы выражения концентрации растворов.
57. Физическая и химическая теории растворов. Сольватация. Теплота растворения. Растворение твердых тел в жидкости. Уравнение Шредера. Растворимость жидкостей в жидкостях.
58. Растворимость газов в жидкостях. Законы Генри и Дальтона. Уравнение Сивертса. закон распределению. Коэффициент распределения. Практические применения закона распределения.
60. Первый и второй законы Рауля. Определение молекулярных масс растворенных веществ (эбуллиоскопия и криоскопия).
61. Растворы электролитов. теория электролитической диссоциации. Диэлектрическая проницаемость различных растворителей.
62. Слабые электролиты. Степень диссоциации, определение ее через электропроводность. Константа диссоциации. Связь константы и степени диссоциации (закон распределения Оствальда).
63.Сильные электролиты. Ионные атмосферы. Кажущаяся степень диссоциации. Активность и коэффициент активности. Произведение растворимости.
64. Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Понятие об индикаторах.
65. Гидролиз солей. Разобрать конкретные примеры. Константа гидролиза. Степень гидролиза.
66. Окислительно-восстановительные реакции. Ионно-электронный метод уравнивания коэффициентов реакций (примеры).
67. Возникновение скачка потенциала на границе «металл-раствор» Двойной электрический слой. Равновесный потенциал.
68. Медно-цинковый гальванический элемент. Процессы на электродах. ЭДС как алгебраическая сумма скачков потенциалов.
69. Термодинамика гальванического элемента : зависимость ЭДС от природы реагирующих веществ, температуры и концентрации. Стандартная ЭДС. Элемент Вестона.
70. Водородный электрод. Формула Нернста для электродного потенциала. Стандартный потенциал. Ряд напряжений. Подсчет ЭДС элемента.
71. Типы электродов и цепей. Концентрационные и амальгамные электроды и цепи. Окислительно-восстановительные электроды и цепи.
72. Электролиз. Последовательность разряда ионов на катоде и аноде в водных растворах. Выход по току. Привести примеры электролиза раствора солей с нерастворимым и растворимым анодом.
73. Законы электролиза. Число Фарадея. Электрохимический эквивалент. Удельный расход электроэнергии.
74. Химическая и концентрационная поляризация при электролизе. Напряжение разложения. Перенапряжение.
76. Классификация химических источников тока. Работа марганцево-цинкового и оксидно-ртутного гальванических элементов.
77. Свинцовый (кислотный) аккумулятор. Процессы при заряде-разряде, влияние примесей, ЭДС.
78. Щелочные аккумуляторы: железо- никелевый, кадмиево- никелквый, серебрянно- цинковый. Процессы при заряде-разряде, ЭДС.
79. Топливные элементы. Электрохимические генераторы. Работа водородно-кислородного топливного элемента. Высокотемпературный т.э. Процессы в метанольно- перекисноводородном т.э.
80. Коррозия металлов. Классификация процессов коррозии. Атмосферная и почвенная коррозия.
81. Химическая коррозия. Защитные пленки на поверхности металлов. «Пассивация» металлов.
82. Гальванокоррозия (микро и макро). Водородная и кислородная деполяризация. Влияние pH и температуры на процесс коррозии. Электрокоррозия.
83. Основные методы борьбы с коррозией. Протекторная защита. Электрозащита (катодная и анодная). Ингибиторы коррозии.
84. Поверхностное натяжение. Принцип Гиббса-Кюри. Адсорбция. Изотерма адсорбции. Лэнгмюра, уравнение Фрейндлиха. Практическое использование адсорбции. Основы хроматографии.
85. Глубокая очистка веществ. Вакуумная возгонка, дуговая плавка, электронно-лучевая плавка.
86. Глубокая очистка веществ: разложение летучих соединений на нагретой поверхности. Направленная кристаллизация и зонная плавка. Выращивание монокристаллов и их легирование.
87. Хранение и методы обращения с высокочистыми веществами. Получение воды высокой степени чистоты.
88. Глубокая очистка газов.
1.Строение электронных оболочек атома. Квантовые числа, s-, p-, d-, f- состояния электронов. Принцип Паули. Правило Гунда. Электронные формулы и энергетические ячейки.
Состояние любого электрона в атоме может быть охарактеризовано набором 4 квантовых чисел. n – главное квантовое число, l – побочное, m – магнитное, s – спиновое. Главное к.ч. характеризует собой общий запас энергии системы, если уподобить электрон облаку, то главное к.ч. характеризует собой размеры этого облака. Электроны одного и того же энергетического уровня образуют электронную оболочку. Г.к.ч принимает целочисленные значения от 1 до 7 (1 – K, 2 – L, 3 – M, 4 – N, 5 – O, 6 – P, 7 – Q). Электроны одного и того же уровня могут различаться по энергетическому состоянию. Электронные уровни подразделяются на подуровни. Электроны одного и того же подуровня различны по величине момента количества движения mvr (m – масса, v - скорость на орбите, r – радиус орбиты). Электроны различных подуровней имеют различную форму облака. Энергетическое состояние электрона на подуровне характеризуется с помощью побочного к.ч. (l=n-1). Max число подуровней-4 (K – s; L – s, p; M – s, p, d; N – s, p, d, f). m – магнитное к.ч. – ориентация электронного облака в пространстве ( –l,0,+l; summa=2l+1 ). Спиновое к.ч. – характеризует направление вращения электрона. Принимает два значения – _0h/2) и –_ов-h/2).
Принцип Паули: в атоме не может быть 2 электронов с одинаковым набором всех 4 к.ч. Максимальное число электронов на подуровне – 2(2l+1). Число электронов на уровне – 2n2. Максимальное число электронов на уровне - 32.
Распределение электронов по уровням и подуровням изображается с помощью электронных формул или ячеек.
Правило Гунда: суммарный спин данного подуровня должен быть максимален. Электроны стремятся занять max возможное число свободных квантовых состояний.
-
Понятие о волновых свойствах электрона. Уравнение л. Де Бройля. Электронные облака s- и p- электронов.
О наличии волновых свойств электрона первым высказался французский учёный Л. де Бройль. Уравнение де Бройля: =h/mV. Если электрон обладает волновыми свойствами, то пучок электронов должен испытывать действие явлений дифракции и интерференции. Волновая природа электронов подтвердилась при наблюдении дифракции электронного пучка в структуре кристаллической решётки. Поскольку электрон обладает волновыми свойствами, положение его внутри объёма атома не определено. Положение электрона в атомном объёме описывается вероятностной функцией, если её изобразить в трёхмерном пространстве, то получим тела вращения (Рис).
-
Энергия ионизации атомов, энергия сродства к электрону, электроотрицательность.
Э.о. – энергия, которую необходимо затратить, чтобы оторвать электрон от нейтрального атома и удалить его на бесконечно большое расстояние (эВ). Атом превращается в + ион. Потенциал ионизации – напряжение, которое необходимо приложить, чтобы оторвать электрон от атома. Существует несколько ионизирующих потенциалов (1-ый = энергии связи, 2-ой > энергии связи). Наиболее важный – 1 (Li 1 – 5,39 B; 2 – 75,62 B; 3 – 122,4 B). Скачкообразный характер потенциалов ионизации указывает на то, что электроны вокруг ядра расположены слоями. Чем больше э.о. тем более выражены неметаллические свойства элемента. Энергия сродства к электрону – энергетический эффект присоединения электрона к атому (атом превращается в – ион). Чем больше э.с.э. тем ярче неметаллические свойства. Электроотрицательность – количественная характеристика способности атома в молекуле притягивать к себе электроны. Сумма энергии сродства к электрону и энергии ионизации. Чем больше электроотрицательность, тем легче его атомы превращаются в – ион.