- •1) Предмет и методы химической термодинамики. Взаимосвязь между
- •2) Основные понятия термодинамики. Интенсивные и экстенсивные
- •3) Типы термодинамических систем (изолированные, закрытые, открытые).
- •4) Типы термодинамических процессов (изотермические, изобарные,
- •5) Первое начало термодинамики.
- •6) Энтальпия. Стандартная энтальпия образования вещества, стандартная энтальпия сгорания вещества. Стандартная энтальпия реакции.
- •Способы расчета стандартной энтальпии химической реакции
- •7) Закон Гесса.
- •8) Применение первого начала термодинамики к биосистемам. (?)
- •9) Второе начало термодинамики. Обратимые и необратимые в
- •10) Энергия Гиббса. Прогнозирование направления самопроизвольно
- •11) Стандартная энергия Гиббса образования вещества, стандартная энергия
- •12) Понятие экзергонических и эндергонических процессов, протекающих в
- •17) Уравнения изотермы и изобары химической реакции.
- •18) Предмет химической кинетики.
- •19) Скорость реакции, средняя скорость реакции в интервале, истинная
- •20) Классификации реакций, применяющиеся в кинетике: реакции,
- •21) Молекулярность элементарного акта реакции.
- •27) Экспериментальные методы определения скорости и константы
- •28) Зависимость скорости реакции от температуры. Правило Вант-
- •29) Уравнение Аррениуса. Энергетический профиль реакции; энергия
- •30) Понятие о теории активных соударений.
- •31) Роль стерического фактора.
- •32) Понятие о теории переходного состояния.
- •33) Катализ. Гомогенный и гетерогенный катализ. Энергетический
- •34) Особенности каталитической активности ферментов. Уравнение
- •32) Понятие о теории переходного состояния (более полная версия научным языком).
3) Типы термодинамических систем (изолированные, закрытые, открытые).
Термодинамическая система – это любое тело или группа тел, находящиеся во взаимодействии и выделяемых из окружающей среды для изучения термодинамическими методами.
Изолированная система – это система, которая не обменивается с окружающей средой ни веществом, ни энергией.
Закрытая система – это система, которая не обменивается со средой веществом, но обменивается энергией.
Открытая система – это система, которая обменивается со средой и веществом, и энергией.
Примером открытой системы является живая клетка.
Состояние системы – это набор свойств системы, позволяющих описать систему с точки зрения термодинамики.
4) Типы термодинамических процессов (изотермические, изобарные,
изохорные).
Переход системы из одного состояния в другое с изменением хотя бы одного параметра называется термодинамическим процессом.
Если процесс идет при постоянном давлении, он называется изобарным процессом. При постоянном объёме - изохорным, при постоянной температуре - изотермическим.
5) Первое начало термодинамики.
Первый закон термодинамики (первое начало термодинамики): энергия не возникает из ничего и не исчезает бесследно, а переходит из одного вида энергии в другой, или приращение внутренней энергии системы в некотором процессе равно теплота, полученной системой, плюс работа, совершенная над системой
∆U=Q+A
∆U - внутренняя энергия
Q - теплота
A – работа
На основе 1 закона термодинамики, являющегося фундаментальным законом природы, простыми расчетами получают ценные сведения о процессах обмена веществ и энергии в организме.
Этот закон имеет большое значение для химических процессов и составляет одну из основ термохимии. При рассмотрении химических процессов возникает главный вопрос – вопрос о происхождении теплового эффекта реакции.
Первое начало термодинамики дает соотношение между количеством теплоты (Q), полученной в данном процессе, количеством произведенной работы (А) и изменением внутренней энергии (∆U). Если система получает теплоту Q и переходит из состояния 1 в состояние 2, то теплота идет на изменение внутренней энергии системы:
∆U = U2 – U1
и на совершение работы (А) против внешних сил:
Q = ∆U + A
Если процесс изобарный (Р = Const), то работа будет равна произведению давления на изменение объема. Тогда количество теплоты, полученной системой равно:
Qp = ∆U + р∆V
Если процесс совершается при постоянном объеме (V = Const) т.е. является изохорным, то ∆V = 0. Энергия, сообщенная системе, будет равна изменению внутренней энергии системы:
Qv = ∆U
В этом случае теплота, получаемая системой, идет только на изменение внутренней энергии.
6) Энтальпия. Стандартная энтальпия образования вещества, стандартная энтальпия сгорания вещества. Стандартная энтальпия реакции.
Энтальпия-это функция состояния, приращение которой равно тепловому эффекту процесса, протекающего при постоянном давлении.
Смысл понятия энтальпия заключается в том, что всякая система, находящаяся при некоторой температуре Т, обладает неким скрытым
запасом теплоты (отсюда и термин “ТЕПЛОСОДЕРЖАНИЕ”),
который требуется, чтобы довести эту систему от абсолютного нуля
до темпрературы Т.
Энтальпия, как и внутренняя энергия, является функцией
состояния, т.е. энтальпия зависит только от состояния системы, но не
зависит от пути, которым система пришла в это состояние.
Энтальпия, как и внутренняя энергия (U), - функция экстенсивная,
т.е. энтальпия – функция состояния вещества, величина которой
зависит от его количества