
- •1. Ходовые и тормозные качества судов
- •1.1. Составляющие сопротивления движению судна на спокойной воде
- •1.2. Полное сопротивление воды движению судна
- •1.3. Дополнительное сопротивление движению судна
- •1.4. Мощность силовой установки. Тяга винта
- •1.5. Ходовые характеристики винтовых судов
- •1.6. Тормозные характеристики судов
- •1.7. Торможение с помощью винта
- •Тормозные пути одновинтовых судов
- •1.8. Сокращение тормозного пути
- •2. Управляемость
- •2.1. Понятие управляемости. Силы и моменты, действующие на судно при перекладке руля
- •2.2. Особенности движения судна во время циркуляции
- •2.3. Элементы циркуляции транспортных судов
- •2.4. Влияние на управляемость совместной работы винта и руля.
- •2.5. Особенности управляемости судов, оборудованных врш и подруливающими устройствами
- •2.6 Особенности управляемости многовинтовых судов
- •2.7. Влияние ветра на управляемость судна
- •2.8. Потеря управляемости при ветре
- •2.9. Разворот одновинтового судна при ветре
- •3. Управление судами на стесненных фарватерах, в узкостях, каналах и на реках
- •3.1. Явления, сопровождающие движение судна на мелководье
- •3.2. Гидромеханическое взаимодействие между судами во время расхождения вблизи друг друга
- •3.3. Особенности управления судами в каналах
- •3.4. Обеспечение безопасности плавания в узкостях
- •3.5. Особенности управления судами при плавании на реках
- •3.6. Проводка судов под мостами
- •4. Стоянка судов на якорях и бочках
- •4.1. Держащая сила якорей
- •Значения коэффициентов держащей силы
- •4.2. Общие требования к постановке судна на якорь
- •4.3. Способы постановки на якорь
- •4.4. Съемка с якоря
- •4.5. Постановка судов на бочки
- •5. Швартовные операции
- •5.1. Безаварийный контакт судна с причалом в процессе швартовных операции
- •5.3. Отход судна от причала
- •5.4. Использование буксиров при швартовных операциях
- •5.5. Особенности использования подруливающих устройств при швартовных операциях
- •5.6. Обеспечение безопасности стоянки судов у причалов
- •5.7. Швартовка судов в море
- •6. Обеспечение безопасности плавания
- •6.1. Основные сведения о волнах
- •6.2. Факторы, воздействующие на судно во время шторма
- •6.3. Опрокидывание судов на попутном волнении
- •6.4. Слеминг
- •6.5. Качка судов
- •6.6. Влияние на качку курса и скорости судна
- •6.7. Повороты в условиях шторма
- •7. Буксировка судов
- •7.1. Требования к буксирной линии
- •7.3. Расчет длины стальной буксирной линии
- •7.4. Расчет длины буксирной линии из синтетического каната
- •7.5. Аварийная буксировка
- •Сопротивления буксируемого судна
- •7.6. Крепление буксирного каната
- •7.7. Управление судами во время буксировки
- •8. Снятие судов с мели
- •8.1. Характер сил, действующих на судно, находящееся на мели
- •8.2. Первоочередные меры при посадке судна на мель
- •8.3. Снятие судна с мели собственными силами, средствами
- •8.4. Снятие судна с мели с помощью другого транспортного судна
- •9. Обеспечение безопасности плавания судов во льдах
- •9.1. Организация вахтенной службы и наблюдения за корпусом судна при плавании во льдах
- •9.2. Управление судном в одиночном плавании
- •9.3. Меры предосторожности при плавании вблизи берегов и в условиях ограниченной видимости
- •9.4. Плавание в составе каравана
- •9.5. Выбор скорости движения и дистанции между судами в караване
- •9.6. Управление судном при плавании в канале за ледоколом в припайных, дрейфующих, сплоченных и разреженных льдах
- •9.7. Подготовка к буксировке и управление судном при буксировке ледоколом
- •9.8. Управление судном при околках ледоколом
- •9.9. Плавание в караване при ограниченной видимости
1.4. Мощность силовой установки. Тяга винта
Чтобы судно двигалось с определенной скоростью, к нему надо приложить движущую силу, преодолевающую сопротивление воды. Мощность, необходимая для преодоления силы сопротивления, равняется работе этой силы в единицу времени, т. е.
EPS=Rv
где R — сила сопротивления;
v — скорость судна.
Данная формула определяет полезную мощность. Силу R можно измерить динамометром при буксировке судна со снятым винтом. Поэтому полезную мощность называют еще буксировочной. Однако сила сопротивления преодолевается тягой винта, который, как и всякий механизм, часть энергии тратит непроизводительно. Работающий винт вступает в гидромеханическое взаимодействие с корпусом судна, что приводит к потере энергии, т. е. работающий винт увеличивает скорость обтекания кормовой оконечности, вызывая понижение давления. Это приводит к появлению дополнительной силы — силы засасывания, действующей в сторону, противоположную перемещению судна. Действие силы засасывания равносильно увеличению сопротивления судна. Следовательно, мощность, затрачиваемая на вращение винта (потребляемая мощность), должна быть больше полезной мощности. Отношение полезной мощности к потребляемой называют пропульсивным коэффициентом комплекса корпус—движитель:
где М — момент сопротивления вращению винта;
w— частота вращения- винта.
Пропульсивный коэффициент η характеризует потребность судна в энергии, необходимой для поддержания заданной скорости движения. Мощность на валу двигателя называют эффективной мощностью Ne. В отличие от потребляемой эффективная мощность включает потери энергии в валопроводе и редукторе, учитываемые КПД ηв, ηр ,т.е.
Данную формулу можно использовать для ориентировочной оценки тяги винта Рп.х в режиме полного эксплуатационного хода. Действительно, приняв среднее значение η =0,75, а η η =0,95, получим (тс):
(1.4)
Максимальная тяга винта развивается в швартовном режиме. У транспортных судов она примерно на 10% больше тяги винта в режиме полного хода. Следовательно, тягу винта Рш в швартовном режиме можно вычислить по формуле
(1.5)
1.5. Ходовые характеристики винтовых судов
К
Рис.
1.5. Паспортная диаграмма тяги транспортного
судна
Практический интерес для судоводителей представляет часть ходовых характеристик, так называемая паспортная диаграмма тяги (рис. 1.5), на которую нанесены следующие кривые:
полезной тяги винта Р(п), каждая при постоянной частоте вращения вала ni-nmax (винтовые характеристики);
сопротивления среды R при различных осадках и различных состояниях поверхности корпуса (потребные тяги);
полезной тяги Pм при постоянном значении вращающего момента, допускаемого особенностями конструкции двигателя и прочностью валопровода (кривые располагаемой тяги).
Точка а пересечения кривых расчетного сопротивления Rрас располагаемой тяги Pм и винтовой характеристики R(П) определяет расчетную скорость vрас при расчетной мощности двигателя. Если сопротивление судна увеличится (например, из-за обрастания), кривая Rрас сместится в положение R'. Точка ее пересечения с кривой располагаемой тяги b укажет на необходимость снижения оборотов, и скорость судна упадет до значения v’.
Паспортная диаграмма тяги содержит все сведения о ходовых качествах судна. Ее можно использовать для построения диаграммы буксировки. Точка пересечения кривой располагаемой тяги с осью ординат дает значение тяги винта в швартовном режиме, который используется при расчетах по снятию судна с мели.