
- •1. Ходовые и тормозные качества судов
- •1.1. Составляющие сопротивления движению судна на спокойной воде
- •1.2. Полное сопротивление воды движению судна
- •1.3. Дополнительное сопротивление движению судна
- •1.4. Мощность силовой установки. Тяга винта
- •1.5. Ходовые характеристики винтовых судов
- •1.6. Тормозные характеристики судов
- •1.7. Торможение с помощью винта
- •Тормозные пути одновинтовых судов
- •1.8. Сокращение тормозного пути
- •2. Управляемость
- •2.1. Понятие управляемости. Силы и моменты, действующие на судно при перекладке руля
- •2.2. Особенности движения судна во время циркуляции
- •2.3. Элементы циркуляции транспортных судов
- •2.4. Влияние на управляемость совместной работы винта и руля.
- •2.5. Особенности управляемости судов, оборудованных врш и подруливающими устройствами
- •2.6 Особенности управляемости многовинтовых судов
- •2.7. Влияние ветра на управляемость судна
- •2.8. Потеря управляемости при ветре
- •2.9. Разворот одновинтового судна при ветре
- •3. Управление судами на стесненных фарватерах, в узкостях, каналах и на реках
- •3.1. Явления, сопровождающие движение судна на мелководье
- •3.2. Гидромеханическое взаимодействие между судами во время расхождения вблизи друг друга
- •3.3. Особенности управления судами в каналах
- •3.4. Обеспечение безопасности плавания в узкостях
- •3.5. Особенности управления судами при плавании на реках
- •3.6. Проводка судов под мостами
- •4. Стоянка судов на якорях и бочках
- •4.1. Держащая сила якорей
- •Значения коэффициентов держащей силы
- •4.2. Общие требования к постановке судна на якорь
- •4.3. Способы постановки на якорь
- •4.4. Съемка с якоря
- •4.5. Постановка судов на бочки
- •5. Швартовные операции
- •5.1. Безаварийный контакт судна с причалом в процессе швартовных операции
- •5.3. Отход судна от причала
- •5.4. Использование буксиров при швартовных операциях
- •5.5. Особенности использования подруливающих устройств при швартовных операциях
- •5.6. Обеспечение безопасности стоянки судов у причалов
- •5.7. Швартовка судов в море
- •6. Обеспечение безопасности плавания
- •6.1. Основные сведения о волнах
- •6.2. Факторы, воздействующие на судно во время шторма
- •6.3. Опрокидывание судов на попутном волнении
- •6.4. Слеминг
- •6.5. Качка судов
- •6.6. Влияние на качку курса и скорости судна
- •6.7. Повороты в условиях шторма
- •7. Буксировка судов
- •7.1. Требования к буксирной линии
- •7.3. Расчет длины стальной буксирной линии
- •7.4. Расчет длины буксирной линии из синтетического каната
- •7.5. Аварийная буксировка
- •Сопротивления буксируемого судна
- •7.6. Крепление буксирного каната
- •7.7. Управление судами во время буксировки
- •8. Снятие судов с мели
- •8.1. Характер сил, действующих на судно, находящееся на мели
- •8.2. Первоочередные меры при посадке судна на мель
- •8.3. Снятие судна с мели собственными силами, средствами
- •8.4. Снятие судна с мели с помощью другого транспортного судна
- •9. Обеспечение безопасности плавания судов во льдах
- •9.1. Организация вахтенной службы и наблюдения за корпусом судна при плавании во льдах
- •9.2. Управление судном в одиночном плавании
- •9.3. Меры предосторожности при плавании вблизи берегов и в условиях ограниченной видимости
- •9.4. Плавание в составе каравана
- •9.5. Выбор скорости движения и дистанции между судами в караване
- •9.6. Управление судном при плавании в канале за ледоколом в припайных, дрейфующих, сплоченных и разреженных льдах
- •9.7. Подготовка к буксировке и управление судном при буксировке ледоколом
- •9.8. Управление судном при околках ледоколом
- •9.9. Плавание в караване при ограниченной видимости
2.8. Потеря управляемости при ветре
Под потерей управляемости при ветре понимают неспособность судна держаться на заданной линии пути или поворачивать в желаемом направлении.
Рассмотрим механизм потери управляемости (см. рис. 2.15). Прямолинейному движению судна с постоянным углом ветрового дрейфа должны соответствовать равенства:
Rкy-Ray-Rpy=0
Mк-Ma+Mp=0
или
Rкy-Ray+Rpy=0
Mк+Ma-Mp=0
в зависимости от того, является судно уваливающимся или самоприводящимся. Если поперечная сила руля или ее момент не в состоянии компенсировать суммарное действие аэродинамических и гидродинамических сил и моментов на корпусе судна, то равенства не будут выполнены и судно потеряет управляемость. У уваливающегося судна аэродинамический и гидродинамический моменты действуют в противоположных направлениях. Для компенсации их разности достаточно перекладки руля на небольшой угол. С усилением ветра дрейф судна увеличится, для удержания его на заданной линии пути потребуется еще большая перекладка руля на ветер. Однако по мере разворота судна к ветру его скорость будет падать, а поперечная гидродинамическая сила на корпусе уменьшаться, что при достаточной силе ветра может привести к неравенству Rау+Rpy>Rку и никакой дальнейшей перекладкой руля удержать судно на заданной линии пути будет невозможно. Легко понять, что перед потерей управляемости у уваливающегося судна будет наблюдаться максимальный угол дрейфа, за которым последует снос с линии пути. Данное обстоятельство должно учитываться прежде всего при плавании по участкам пути ограниченной ширины.
У самоприводящегося судна аэродинамический и гидродинамический моменты действуют согласованно, стремясь привести судно к ветру. Для их компенсации требуются большие углы перекладки руля под ветер. При сильном ветре перекладки руля может не хватить, чтобы уравновесить аэродинамический и гидродинамический моменты на корпусе, т. е. Ма+Мк>Мр, и судно будет неспособно повернуть под ветер. Таким образом, если у уваливающегося судна потере управляемости предшествует максимальный угол дрейфа, то у самоприводящегося судна — максимальный угол перекладки руля.
Судоводители должны учитывать и то, что существуют опасные курсовые утлы ветра, при которых наблюдается либо максимальный угол дрейфа, либо максимальный угол перекладки руля. Это связано как с величиной силы давления ветра, так и с плечом l1. Для уваливающихся судов опасными являются курсовые углы кажущегося ветра 40 — 60°, для самоприводящихся — 120 — 150°.
Следует отметить также, что потеря управляемости судном зависит не от абсолютной скорости ветра, а от отношения скорости ветра к скорости судна. Это хорошо видно, если условия потери управляемости переписать в виде:
Kaw2+Kpv2>Kкv2
K’aw2+K’кv2>K’pv2
Ka,Kк ,Kp – коэффициенты сил;
К'а, К'к, K'р — коэффициенты моментов.
Или, разделив обе части неравенств на v2, получим:
;
.
Рис.
2.16. Диаграмма потери управляемости
танкера
«София» в балласте (γ
= 20°)