
- •Раздел I. Основы теории информации.
- •1.Информация:основные понятия, свойства информации.
- •2. Символы и сигналы, их виды
- •3. Способы измерения информации: геометрическая мера, комбинаторная мера
- •4.Аддетивная мера информации. Мера Хартли.
- •5.Статистическая мера информации. Связь вероятности информации.
- •6.Энтропия и ее основные свойства.
- •Раздел II. Переносчики информации
- •1.Физические сигналы и их математическое описание. Виды сигналов
- •2. Спектральные характеристики сигналов
- •3. Отличительные (информационные) признаки сигналов
- •4. Виды сообщений
- •5. Квантование сигналов и его роль в спд
- •6. Виды квантования: по уровню, по времени.
- •7. Квантование по уровню и времени
- •8. Дифференциальное квантование
- •9. Теорема Котельникова. Функция отсчетов и ее свойства
- •10. Практическое значение теоремы Котельникова
- •Раздел III. Способы формирования сообщений
- •1. Нанесение и снятие информации с материальных носителей.
- •2. Типы переносчиков сигналов
- •3. Непрерывные методы модуляции, основные понятия и виды.
- •4. Амплитудная модуляция (ам) и ее особенности.
- •5. Частотная и фазовая модуляция
- •6. Спектры модулированных колебаний
- •7. Балансная модуляция (дбп и обп)
- •8. Полярная модуляция
- •9. Амплитудная манипуляция (аМн)
- •10. Частотная манипуляция (чАм)
- •11. Фазовая манипуляция (афМн и офм/фрм)
- •12. Двухкратные непрерывные модуляции
- •13. Импульсные методы модуляции, их виды
- •14. Аим: виды и особенности
- •19. Δ-модуляция
- •20. Разностно-дискретная модуляция
- •21. Λ-δ-модуляция
- •22. Многократные методы модуляции
- •23. Демодуляция (детектирование) сигналов
- •Раздел IV. Передача данных по каналам связи
- •1.Основные хар-ки каналов связи
- •2. Скорость передачи данных по каналам связи
- •3. Согласование физических характеристик сигналов и каналов связи
- •4.Согласование статических свойств источника сообщений и канала связи
- •5. Принцип работы идеального приемника в.А. Котельникова
- •6. Критерий эффективности передачи данных по каналам связи.
- •Раздел V. Основы теории кодирования
- •1.Кодирование информ. И его роль в спд
- •2. Непомехоустойчивые коды, их виды и особенности
- •3. Код Грея, его особенности и назначение(рефлексный или отражательный код)
- •4. Основные принципы эффективного кодирования.
- •5. Эффективное кодирование по алгоритму Шеннона-Фана
- •6. Эффективное кодирование по алгоритму Хафмена
- •7. Помехоустойчивое кодирование, использование принципа избыточности для повышения помехоустойчивости спд
- •8. Основные виды помехоустойчивых кодов
- •9. Использование избыточности кодов для обнаружения ошибок
- •10. Кодовое расстояние Хемминга и его использование для коррекции ошибок.
- •11. Декодирование по принципу максимального правдоподобия
- •12. Связь максимальной кратности обнаруживаемых и исправляемых ошибок с минимальным кодовым расстоянием.
- •13. Показатели качества корректирующего кода
- •14. Геометрическая интерпретация блоковых корректирующих кодов
- •15. Принципы построения блоковых линейных кодов
- •16. Циклические коды, их особенности и принципы построения
- •17. Коды бчх, общая характеристика.
7. Квантование по уровню и времени
При кв-нии по уровню переход от одного дискр. значения к другому происходит в произволь. мом. вр.
При кв-нии по времени отсчета значения ф-и берутся через зад. промежутки времени, но с переменным шагом квантования по уровню. Целесообразно осущ-лять одновременное кв-ние по уровню и времени. В этом случае передача квантованных или дискретных значений ф-й осущ-ся в зад. мом. вр., что обеспечивает требуемую точность воспроизв-я ф-и при приеме: ∆=√S2ур+S2вр.
8. Дифференциальное квантование
В этом случае область сущ-ния ф-и разбивается на отдельные ячейки с шагом q по уровню и ∆t по времени. При этом переход от одного квантованного значения к другому происходит по следующему правилу:
Если в зад. мом. вр. t текущее значение ф-и x(t) оказывается > соответствующего дискретного значения, отсчитанного на предыдущем шаге, то происходит прерход на ближайший более высокий дискретный уровень. Если текущее значение оказывается < предшествующего квантованного, то происходит переход на ближайший более низкий уровень.
Недостатком этого способа явл. то, что при быстрых изменениях ф-и возможно отставание ступенчатой аппроксимирующей ф-и от фактических значений. Вследствии этого погрешность диф. квантования оказывается выше, чем при др. видах квантования. В среднем оно в 4 раза превышает ошибку квантования по уровню. К недостаткам этого метода относится возможность накопления ошибок от помех в канале связи. Преимуществом диф. кв-я явл. возможность передачи значений квантованной ф-и с полярными признаками.
9. Теорема Котельникова. Функция отсчетов и ее свойства
Для исполь-я достоинств цифр. ус-в для задач обработки сигналов возникает необходимость исп-я дискретных сигналов. Для этих целей широко пользуются методом дискретизации, при кот. значение ф-и x(t) заменяется совокупностью ее дискретных значений, взятых в опр. мом. вр. Эти дискр. зн-я наз.
выборками или отсчетами: x(t)→{xк(tк)}, tк+1-tк=∆tк – шаг квантования.
В 1933 Котельниковым была доказана теорема: любая непр. ф-я x(t), частотный спектр кот. ограничен нек. зн-ем частоты f≤fmax≤∞, может быть полностью и безошибочно восстановлена по ее дискр. отсчетам, взчтым через интервалы времени ∆tк =1/2Fmax ; ωm=2πfmax. Ф-я для отсчетов:
В общем случае ряд Котельникова мржно рассматривать как частный случай x(t)=Σaкφк(t). В кач-ве базисных ф-й φ(t) могут быть исп-ны не ф-и отсчетов Котельникова, а и др. системы ф-й, такие как ф-и Уолла, Хегара, кр. того в теории сигналов исп-ся представление ф-и многочленами Чебышева, Ленеарда, Лагера. Из теории Котельникова можно сделать вывод: Каждую ф-ю отсчетов можно рассм. как реакцию идеального ФНЧ.
Из ряда Котельникова следует, что непр. сообщение x(t) можно восстановить по зад. мгнов. зн-ям x(∆tк), пропуская импульсы отсчетов через идеальный ФНЧ.
Восстановление непрерыв. сообщения.
Процесс восстан-я непр. сообщ. по зад. выборкам наз-ся интерполяцией. Могут исп-ся различные виды интерполяции в зав-ти от треб. точности. Ограничиваются ступенчатой или трапецевидной интерполяцией