
- •1. Общие указания по содержанию и оформлению курсовой работы
- •2. Выбор сталей для строительных конструкций
- •Стали для конструкций зданий и сооружений по гост 27772-88
- •Нормируемые характеристики для категорий поставки
- •Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе проката по гост 27772-88 для стальных конструкций зданий и сооружений
- •Расчетные сопротивления проката смятию торцевой поверхности (при наличии пригонки)
- •Расчетные сопротивления сварных соединений
- •Нормативные и расчетные сопротивления металла швов сварных соединений
- •3. Расчет и конструирование соединений металлических конструкций
- •3.1. Сварные соединения
- •3.1.1. Виды сварных соединений
- •Виды сварных соединений
- •Допустимая наибольшая разность толщин деталей, свариваемых встык без скоса кромок
- •3.1.2. Классификация сварных швов
- •Минимальные катеты cварных швов
- •Виды стыковых швов в элементах стальных конструкций
- •3.1.3. Расчет стыковых соединений
- •Коэффициенты условий работы с
- •3.1.4. Расчет нахлесточных соединений
- •Значения коэффициентов f и z
- •Максимальные катеты швов kf, max у скруглений прокатных профилей
- •3.2. Болтовые соединения
- •ВысокопрочныеГост 22356-77
- •Диаметры отверстий болтов
- •3.2.1. Размещение болтов в соединении
- •Размещение болтов
- •3.2.2. Срезные соединения на болтах нормальной точности
- •Расчетные сопротивления срезу и растяжению болтов
- •Расчетные сопротивления смятию Rвр элементов, соединяемых болтами
- •Площади сечения болтов согласно ст сэв 180-75,
- •Коэффициенты условий работы соединения
- •3.2.3. Фрикционные соединения на высокопрочных болтах
- •Механические свойства высокопрочных болтов по гост 22356 – 77*
- •Коэффициенты трения и надежности h
- •4. Расчет и конструирование элементов балочной клетки
- •Вертикальные предельные прогибы fu элементов балочной клетки
- •4.1. Первый вариант балочной клетки
- •4.1.1. Расчет плоского стального настила
- •Рекомендуемая толщина стального настила
- •4.1.2. Расчет балки настила
- •4.2. Второй вариант балочной клетки
- •4.2.1. Расчет балки настила
- •Площадь пояса
- •4.2.2. Расчет вспомогательной балки
- •Нормативная нагрузка на вспомогательную балку
- •Площадь пояса
- •4.3. Третий вариант балочной клетки
- •4.3.1. Расчет железобетонного настила
- •Толщина железобетонной плиты
- •4.3.2. Расчет балки настила
- •4.4. Четвертый вариант балочной клетки
- •4.4.1. Расчет балки настила
- •4.4.2. Расчет вспомогательной балки
- •Площадь пояса
- •4.5. Выбор оптимального варианта балочной клетки
- •Сравнение вариантов балочной клетки (расход на 1 м2 рабочей площадки)
- •5. Расчет главной балки
- •5.1. Определение усилий
- •5.2. Компоновка сечения
- •Рекомендуемые соотношения высоты балки и толщины стенки
- •Сортамент горячекатаных полос по гост 103-76*
- •Сталь листовая горячекатаная (выборка из гост 19903-74*)
- •Сталь широкополосная универсальная по (по гост 82-70*)
- •Наибольшие значения отношения ширины свеса сжатого пояса bef к толщине tf
- •5.3. Проверка прочности балки
- •5.4. Изменение сечения балки по длине
- •5.5. Проверка общей устойчивости балки
- •5.6. Проверка местной устойчивости элементов балки
- •5.6.1. Проверка местной устойчивости стенки балки
- •Значения коэффициента ссr в зависимости от значения δ
- •5.6.2. Проверка местной устойчивости стенки балки при наличии местных напряжений (σloc 0)
- •Значение коэффициента c1
- •Значение коэффициента c2
- •Значения коэффициента ccr в зависимости от отношения a/hw
- •5.7. Проверка жесткости главной балки
- •5.8. Расчет соединения поясов балки со стенкой
- •5.9. Конструирование и расчет опорной части главной балки
- •Характеристики кривых устойчивости
- •5.10. Проектирование монтажного стыка главной балки
- •5.10.1. Монтажный стык на сварке
- •5.10.2. Монтажный стык на высокопрочных болтах
- •Размеры высокопрочных болтов
- •Механические свойства высокопрочных болтов по гост 22356 – 77*
- •Расчет стыка пояса. Расчетное усилие в поясе определяется по формуле
- •Коэффициенты стыка стенки балок
- •6. Расчет колонн
- •6.1. Подбор сечения сплошной колонны
- •Коэффициенты устойчивости при центральном сжатии
- •Приближенные значения радиусов инерции IX и iy сечений
- •6.2. Подбор сечения сквозной колонны
- •6.2.1. Расчет колонны на устойчивость относительно материальной оси
- •6.2.2. Расчет колонны на устойчивость относительно свободной оси y-y
- •6.2.3. Сквозная колонна с планками
- •6.2.4. Сквозная колонна с решеткой
- •6.3. Конструирование и расчет оголовка колонны
- •6.3.1. Оголовок сплошной колонны
- •6.3.2. Оголовок сквозной колонны
- •6.4. Конструирование и расчет базы колонны
- •6.4.1. Определение размеров опорной плиты в плане
- •Расчетные сопротивления бетона Rb
- •6.4.2. Определение толщины опорной плиты
- •Коэффициенты 1 для расчета на изгиб плиты, опертой по четырем сторонам
- •Коэффициенты для расчета на изгиб плиты, опертой на три канта
- •6.4.3. Расчет траверсы
- •6.4.4. Расчет ребер усиления плиты
- •Заключение
- •Образец титульного листа пояснительной записки
- •Расчетно-пояснительная записка
- •Глоссарий терминов
- •Оглавление
- •1. Общие указания по содержанию и оформлению курсовой
- •3. Расчет и конструирование соединений металлических
- •Темников Виктор Георгиевич проектирование рабочей площадки
- •664074, Иркутск, ул. Лермонтова, 83
6.2.4. Сквозная колонна с решеткой
Расчет колонны относительно свободной оси y-y.
Чтобы определить приведенную гибкость в колоннах с треугольной решеткой задаемся сечением двух раскосов Ad1 = 2Ad (начиная с равнополочного уголка ∟505/ГОСТ 8509-93 с площадью Ad = 4,8 см2, в ходе расчета треугольной решетки размеры сечения при необходимости уточняются).
Для треугольной решетки, состоящей из одних раскосов, угол между раскосом и направлением поперечной силы α = 35о (рис. 6.7), для треугольной решетки с дополнительными распорками – α = 45о.
Приравнивая λx
= λef
=
находим требуемое значение гибкости
колонны относительно свободной оси:
λy
=
где α1 = 10ld3/(bo2l1) = 10/(cos2α sinα) = 10 / (0,8192 ∙ 0,574) = 26 при α = 35о.
Рис. 6.7. К расчету треугольной решетки
По λy находим радиус инерции:
iy = ly /λy = 813 / 54,67 = 14,87 см.
Воспользовавшись приближенными значениями радиусов инерции по табл. 6.2, определяем ширину сечения:
Принимаем b = 340 мм и проверяем расстояние в свету между полками швеллеров:
Расстояние достаточно.
Определяем расстояние между ветвями:
Проверка колонны на устойчивость относительно оси у-у.
Момент инерции сечения колонны относительно оси у-у
Iy = 2[I1 + Ab(bо/2)2] = 2 [513 + 53,4 (28,64 / 2)2] = 22926,7 см4.
Радиус инерции
Гибкость стержня колонны
λy = ly/iy = 813 / 14,65 = 55,49.
Приведенная гибкость
Условная приведенная гибкость
По табл. 6.1 в
зависимости от
для типа кривой устойчивости ″b″
определяем коэффициент устойчивости
при центральном сжатии φ = 0,83.
Производим проверку:
Устойчивость колонны относительно оси y-y обеспечена.
Недонапряжение в колонне
что допустимо в составном сечении согласно СНиП [4].
В колоннах с решеткой должна быть также проверена устойчивость отдельной ветви на участке между смежными узлами решетки.
Расчетное усилие
Nb = N/2 = 2067,18 / 2 =1033,59 кН.
Расчетная длина ветви (см. рис. 6.7)
l1 = 2bo tgα = 2 · 28,64 · 0,7 = 40,1 см.
Площадь сечения ветви Ab = 53,4 см2.
Радиус инерции сечения [36 относительно оси 1-1 i1 = 3,1 см.
Гибкость ветви
Условная гибкость ветви
Коэффициент устойчивости при центральном сжатии для типа кривой устойчивости ″b″ φ = 0,984.
Проверяем устойчивость отдельной ветви:
Ветвь колонны на участке между смежными узлами решетки устойчива.
Расчет треугольной решетки.
Расчет треугольной решетки сквозной колонны выполняется как расчет решетки фермы на осевое усилие от условной поперечной силы Qfic. При расчете перекрестных раскосов крестовой решетки с распорками следует учитывать дополнительное усилие, возникающее в каждом раскосе от обжатия ветвей колонны. Усилие в раскосе определяем по формуле
Сечение раскоса из равнополочного уголка ∟50×5, предварительно принятое при расчете стержня сквозной колонны (Ad = 4,8 см2), проверяем на устойчивость, для этого вычисляем:
– расчетную длину раскоса
ld = bo/cosα = 28,64 / 0,819 = 34,97 см;
– максимальную гибкость раскоса
где iyo = 0,98 см – минимальный радиус инерции сечения уголка относительно оси yо-yо (по сортаменту);
– условную гибкость раскоса
– φmin = 0,925 – минимальный коэффициент устойчивости для типа кривой устойчивости ″b″;
Ry = 25 кН/см2 – расчетное сопротивление стали С255 при толщине
фасонного проката t 10 мм;
– γс = 0,75 – коэффициент условий работы, учитывающий одностороннее прикрепление раскоса из одиночного уголка (см. табл. 3.5).
Производим проверку сжатого раскоса на устойчивость по формуле
Устойчивость раскоса обеспечена.
Распорки служат для уменьшения расчетной длины ветви колонны и рассчитываются на усилие, равное условной поперечной силе в основном сжатом элементе (Qfic/2). Обычно они принимаются такого же сечения, как и раскосы. Рассчитываем узел крепления раскоса к ветви колонны механизированной сваркой на усилие в раскосе Nd = 16,37 кН. Расчет сварного шва производим по металлу границы сплавления.
Усилия, воспринимаемые швами:
– у обушка
Nоб = (1 – α)Nd = (1 – 0,3) 16,37 = 11,46 кН;
– у пера
Nп = αNd = 0,3 · 16,37 = 4,91 кН.
Задаваясь минимальным катетом шва у пера kf = tуг – 1 = 5 – 1 = 4 мм, находим расчетные длины шва:
– у обушка
lw,об = Nоб/(βz Rwzγwzγc) = 11,46 / (1,05 · 0,4 · 16,65 · 1 · 1) = 1,64 см;
– у пера
lw,п = Nп/(βz Rwzγwzγc) = 4,91 / (1,05 · 0,4 · 16,65 · 1 · 1) = 0,7 см.
Принимаем конструктивно минимальную длину сварного шва у обушка и пера lw,об = lw,п = 40 + 1 = 50 мм.
Если не удается разместить сварные швы в пределах ширины ветви, то для увеличения длины швов возможно центрирование раскосов на грань колонны.
При делении колонны на отправочные марки, вызванном условиями транспортирования, отправочные элементы сквозных колонн с решетками в двух плоскостях следует укреплять диафрагмами, располагаемыми у концов отправочного элемента. В сквозных колоннах с соединительной решеткой в одной плоскости диафрагмы следует располагать по всей длине колонны не реже, чем через 4 м. Толщину диафрагмы принимают 8 – 14 мм (рис. 6.8).
Рис. 6.8. Диафрагма жесткости