
- •1. Общие указания по содержанию и оформлению курсовой работы
- •2. Выбор сталей для строительных конструкций
- •Стали для конструкций зданий и сооружений по гост 27772-88
- •Нормируемые характеристики для категорий поставки
- •Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе проката по гост 27772-88 для стальных конструкций зданий и сооружений
- •Расчетные сопротивления проката смятию торцевой поверхности (при наличии пригонки)
- •Расчетные сопротивления сварных соединений
- •Нормативные и расчетные сопротивления металла швов сварных соединений
- •3. Расчет и конструирование соединений металлических конструкций
- •3.1. Сварные соединения
- •3.1.1. Виды сварных соединений
- •Виды сварных соединений
- •Допустимая наибольшая разность толщин деталей, свариваемых встык без скоса кромок
- •3.1.2. Классификация сварных швов
- •Минимальные катеты cварных швов
- •Виды стыковых швов в элементах стальных конструкций
- •3.1.3. Расчет стыковых соединений
- •Коэффициенты условий работы с
- •3.1.4. Расчет нахлесточных соединений
- •Значения коэффициентов f и z
- •Максимальные катеты швов kf, max у скруглений прокатных профилей
- •3.2. Болтовые соединения
- •ВысокопрочныеГост 22356-77
- •Диаметры отверстий болтов
- •3.2.1. Размещение болтов в соединении
- •Размещение болтов
- •3.2.2. Срезные соединения на болтах нормальной точности
- •Расчетные сопротивления срезу и растяжению болтов
- •Расчетные сопротивления смятию Rвр элементов, соединяемых болтами
- •Площади сечения болтов согласно ст сэв 180-75,
- •Коэффициенты условий работы соединения
- •3.2.3. Фрикционные соединения на высокопрочных болтах
- •Механические свойства высокопрочных болтов по гост 22356 – 77*
- •Коэффициенты трения и надежности h
- •4. Расчет и конструирование элементов балочной клетки
- •Вертикальные предельные прогибы fu элементов балочной клетки
- •4.1. Первый вариант балочной клетки
- •4.1.1. Расчет плоского стального настила
- •Рекомендуемая толщина стального настила
- •4.1.2. Расчет балки настила
- •4.2. Второй вариант балочной клетки
- •4.2.1. Расчет балки настила
- •Площадь пояса
- •4.2.2. Расчет вспомогательной балки
- •Нормативная нагрузка на вспомогательную балку
- •Площадь пояса
- •4.3. Третий вариант балочной клетки
- •4.3.1. Расчет железобетонного настила
- •Толщина железобетонной плиты
- •4.3.2. Расчет балки настила
- •4.4. Четвертый вариант балочной клетки
- •4.4.1. Расчет балки настила
- •4.4.2. Расчет вспомогательной балки
- •Площадь пояса
- •4.5. Выбор оптимального варианта балочной клетки
- •Сравнение вариантов балочной клетки (расход на 1 м2 рабочей площадки)
- •5. Расчет главной балки
- •5.1. Определение усилий
- •5.2. Компоновка сечения
- •Рекомендуемые соотношения высоты балки и толщины стенки
- •Сортамент горячекатаных полос по гост 103-76*
- •Сталь листовая горячекатаная (выборка из гост 19903-74*)
- •Сталь широкополосная универсальная по (по гост 82-70*)
- •Наибольшие значения отношения ширины свеса сжатого пояса bef к толщине tf
- •5.3. Проверка прочности балки
- •5.4. Изменение сечения балки по длине
- •5.5. Проверка общей устойчивости балки
- •5.6. Проверка местной устойчивости элементов балки
- •5.6.1. Проверка местной устойчивости стенки балки
- •Значения коэффициента ссr в зависимости от значения δ
- •5.6.2. Проверка местной устойчивости стенки балки при наличии местных напряжений (σloc 0)
- •Значение коэффициента c1
- •Значение коэффициента c2
- •Значения коэффициента ccr в зависимости от отношения a/hw
- •5.7. Проверка жесткости главной балки
- •5.8. Расчет соединения поясов балки со стенкой
- •5.9. Конструирование и расчет опорной части главной балки
- •Характеристики кривых устойчивости
- •5.10. Проектирование монтажного стыка главной балки
- •5.10.1. Монтажный стык на сварке
- •5.10.2. Монтажный стык на высокопрочных болтах
- •Размеры высокопрочных болтов
- •Механические свойства высокопрочных болтов по гост 22356 – 77*
- •Расчет стыка пояса. Расчетное усилие в поясе определяется по формуле
- •Коэффициенты стыка стенки балок
- •6. Расчет колонн
- •6.1. Подбор сечения сплошной колонны
- •Коэффициенты устойчивости при центральном сжатии
- •Приближенные значения радиусов инерции IX и iy сечений
- •6.2. Подбор сечения сквозной колонны
- •6.2.1. Расчет колонны на устойчивость относительно материальной оси
- •6.2.2. Расчет колонны на устойчивость относительно свободной оси y-y
- •6.2.3. Сквозная колонна с планками
- •6.2.4. Сквозная колонна с решеткой
- •6.3. Конструирование и расчет оголовка колонны
- •6.3.1. Оголовок сплошной колонны
- •6.3.2. Оголовок сквозной колонны
- •6.4. Конструирование и расчет базы колонны
- •6.4.1. Определение размеров опорной плиты в плане
- •Расчетные сопротивления бетона Rb
- •6.4.2. Определение толщины опорной плиты
- •Коэффициенты 1 для расчета на изгиб плиты, опертой по четырем сторонам
- •Коэффициенты для расчета на изгиб плиты, опертой на три канта
- •6.4.3. Расчет траверсы
- •6.4.4. Расчет ребер усиления плиты
- •Заключение
- •Образец титульного листа пояснительной записки
- •Расчетно-пояснительная записка
- •Глоссарий терминов
- •Оглавление
- •1. Общие указания по содержанию и оформлению курсовой
- •3. Расчет и конструирование соединений металлических
- •Темников Виктор Георгиевич проектирование рабочей площадки
- •664074, Иркутск, ул. Лермонтова, 83
6.2. Подбор сечения сквозной колонны
Принимаем сечение сквозной колонны из двух швеллеров, соединенных планками (рис. 6.4).
Рис. 6.4. Составной стержень колонны на планках
Расчетом сквозных колонн относительно материальной оси x-x определяют номер профиля. Расчетом относительно свободной оси y-y, производимым так же, как сплошных колонн, но с заменой гибкости стержня приведенной гибкостью, назначают расстояние между ветвями, при котором обеспечивается равноустойчивость стержня в двух взаимно перпендикулярных плоскостях.
6.2.1. Расчет колонны на устойчивость относительно материальной оси
Рекомендуют предварительно задаться гибкостью: для средних по длине колонн 5 – 7 м с расчетной нагрузкой до 2500 кН принимают гибкость = 90 – 50; для колонн с нагрузкой 2500 – 3000 кН – = 50 – 30. Для более высоких колонн необходимо задаваться гибкостью несколько большей.
Предельная
гибкость колонн
где
– коэффициент, учитывающий неполное
использование несущей способности
колонны и принимаемый не менее 0,5. При
полном использовании несущей способности
колонны u
= 120.
Задаемся гибкостью = 50.
Условная гибкость
По табл. 5.10
определяем тип кривой в соответствии
с типом принятого сечения (тип ′′b′′).
Согласно табл. 6.1 условной гибкости
= 1,7 соответствует коэффициент
устойчивости при центральном сжатии
= 0,868.
Находим требуемую площадь поперечного сечения по формуле
.
Требуемая площадь одной ветви
Требуемый радиус инерции относительно оси x-x
По требуемым площади Ab и радиусу инерции ix выбираем из сортамента (ГОСТ 8240-93) два швеллера №36, имеющих следующие характеристики сечения:
Ab = 53,4 см2; A = 2Ab = 53,4 2 = 106,8 см2; Ix = 10820 см4; I1 = 513 см4;
ix = 14,2 см; i1 = 3,1 см; линейную плотность (массу 1 м пог.), равную 41,9 кг/м; толщину стенки d = 7,5 мм; ширину полки bb = 110 мм; привязку к центру тяжести zо = 2,68 см.
Если максимальный швеллерный профиль [40 не обеспечивает требуемую несущую способность сквозной колонны, переходят на проектирование ветвей колонны из прокатных двутавров, принимаемых по ГОСТ 8239–89.
Определяем:
– гибкость колонны
;
– условную гибкость
– для кривой устойчивости ′′b′′ коэффициент устойчивости φ = 0,833.
Проверяем общую устойчивость колонны относительно материальной
оси x-x:
Общая устойчивость колонны обеспечена.
Недонапряжение в колонне
Если устойчивость колонны не обеспечена или получен большой запас, то принимают меньший номер профиля и вновь делают проверку.
6.2.2. Расчет колонны на устойчивость относительно свободной оси y-y
Расчет на устойчивость центрально-сжатой колонны сквозного сечения, ветви которой соединены планками или решетками, относительно свободной оси (перпендикулярной плоскости планок или решеток) производят по приведенной гибкости ef :
– для колонны с планками
при
и
при
– для колонны с треугольной решеткой
где
– теоретическая гибкость стержня
колонны относительно оси y-y;
– гибкость ветви колонны относительно
оси 1-1;
– момент инерции сечения одной планки
относительно собственной оси z-z;
I1 – момент инерции ветви относительно оси 1-1 (по сортаменту);
lb – расстояние между планками по центрам тяжести;
lob – расстояние между планками в свету;
bo – расстояние между центрами тяжести ветвей колонн;
n = I1bо/(Islb) – отношение погонных жесткостей ветви и планки;
A – площадь сечения всего стержня колонны;
Ad1 – суммарная площадь поперечных сечений раскосов решеток, лежащих в плоскостях, перпендикулярных оси у-у;
α1 = 10a3/(b2l) – коэффициент, зависящий от угла наклона раскоса к ветви β (a, b, l – размеры, определяемые по рис. 6.5).
Рис. 6.5. Схема треугольной решетки
Подбор сечения колонн относительно оси y-y производится из условия ее равноустойчивости (равенства гибкости λx относительно x-x и приведенной гибкости λef относительно оси y-y), которая достигается за счет изменения расстояния между ветвями bo.