Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОРЕКТИРОВАНИЕ РАБОЧЕЙ ПЛОЩАДКИ.doc
Скачиваний:
75
Добавлен:
12.11.2018
Размер:
2.46 Mб
Скачать

5.5. Проверка общей устойчивости балки

Общая устойчивость балки считается обеспеченной при передаче нагрузки через сплошной жесткий настил, непрерывно опирающийся на сжатый пояс балки и надежно с ним связанный, а также, если соблюдается условие: отношение расчетной длины участка балки lef между связями, препятствующими поперечным смещениям сжатого пояса балки, к его ширине bf не превышает критическое значение, определяемое по формуле

где lef = 3 м – расстояние между точками закрепления сжатого пояса от поперечных смещений, равное шагу балок настила a1.

Проверяем:

– в середине пролета балки

– в измененном сечении балки

Общая устойчивость балки обеспечена.

Если общая устойчивость конструктивно не обеспечена (проверка по выше приведенным формулам дает неудовлетворительный результат), общую устойчивость балки необходимо проверить по формуле

где Wc – момент сопротивления сечения относительно оси x-x, вычисленный для сжатого пояса;

φb – коэффициент устойчивости при изгибе, определяемый по [4, прил.7*];

с = 0,95 – коэффициент условий работы при расчетах на общую устойчивость при b  1 (см. табл. 3.5).

5.6. Проверка местной устойчивости элементов балки

Местная устойчивость сжатого пояса балки считается обеспеченной, если соблюдается условие:

Местная устойчивость пояса была обеспечена при компоновке сечения балки соответствующим назначением отношения свеса пояса bef к его толщине tf (см. п. 5.2).

5.6.1. Проверка местной устойчивости стенки балки

Под действием нормальных и касательных напряжений стенка балки может потерять местную устойчивость, т.е. может произойти ее местное выпучивание. Это произойдет в том случае, если действующие в балке отдельные виды напряжений или их совместное воздействие превысят критические напряжения потери устойчивости. Устойчивость стенки обычно обеспечивают не за счет увеличения ее толщины, что привело бы к повышенному перерасходу материала из-за большого размера стенки, а за счет укрепления ее ребрами жесткости. Поперечные ребра устанавливаются так же в местах приложения больших сосредоточенных нагрузок и на опорах.

Стенку балки следует укреплять поперечными ребрами жесткости, если значение условной гибкости превышает 3,2 при отсутствии местной нагрузки на пояс балки и 2,2 – при наличии местной нагрузки.

Определяем условную гибкость стенки:

следовательно, поперечные ребра жесткости необходимы (рис. 5.7). Расстояние между основными поперечными ребрами a не должно превышать 2hw при w > 3,2 и 2,5 hw при w  3,2. Для балок, рассчитываемых в упругой стадии, допускается превышать указанные выше расстояния между ребрами до значения 3hw при условии передачи нагрузки через сплошной жесткий настил или при значении гибкости сжатого пояса балки из плоскости балки λf = lef /bf, не превышающем ее предельного значения λfu (в примере это условие соблюдается: в середине пролета балки λf = 6,67 < λfu = 15,64; в месте изменения сечения балки 12,56 < λfu = 14,3). При этом должна быть произведена проверка и обеспечена местная устойчивость элементов балки.

Рис. 5.7. Схема балки, укрепленной поперечными ребрами жесткости

Расстояние между ребрами назначаем , что увязывается с шагом балок настила Нельзя располагать ребра в местах монтажных стыков в балках, изготовленных из нескольких отправочных марок. При шаге а = 3 м поперечное ребро жесткости попадает на монтажный стык в середине пролета балки, поэтому первое и последующие за ним ребра смещаем к опоре на расстояние а/2 = 1,5 м. Если стык поясов в месте изменения сечения балки по длине попадает на торец ребра, то стык несколько смещают в сторону к опоре.

Ширина выступающей части парного ребра должна быть не менее

br = hw/30 + 40 = 1500 / 30 + 40 = 90 мм.

для одностороннего ребра – br = hw / 24 + 50 = 1500 / 24 + 50 = 112,5 мм.

Толщина ребер

Принимаем ребро жесткости по ГОСТ 103–76* (табл. 5.2) из двух стальных полос 907 мм. Ребра жесткости привариваются к стенке непрерывными угловыми швами минимальной толщины. Торцы ребер должны иметь скосы с размерами 6040 мм для снижения концентрации сварочных напряжений в зоне пересечения сварных швов и пропуска поясных швов балки.

Поперечное ребро жесткости, расположенное в месте приложения сосредоточенной нагрузки Fb = 334,08 кН к верхнему поясу балки проверяют расчетом на устойчивость: двустороннее ребро – как центрально-сжатую стойку, одностороннее – как стойку, сжатую с эксцентриситетом, равным расстоянию от срединной плоскости стенки до центра тяжести расчетного сечения стойки. При этом в расчетное сечение стойки включают сечение ребра жесткости и устойчивые полосы стенки шириной

c = 0,65tw = 0,65 · 1,2 = 22,85 см

с каждой стороны ребра, а расчетную длину принимают равной высоте стенки hw = 1500 мм (рис. 5.8).

Рис. 5.8. Расчетное сечение условной стойки

Расчетная площадь стойки при двустороннем ребре

As = (2br+ tw)tr+ 2ctw = (2 · 9 + 1,2) 0,7 + 2 ∙ 22,85 ∙ 1,2) = 68,28 см2.

Момент инерции сечения стойки

Iz = tr(2br+ tw)3/12 + 2ctw3/12 = 0,7 (2 ∙ 9 +1,2)3 / 12 + 2 ∙ 22,85 ∙ 1,23 / 12 =

= 412,88 см4.

Радиус инерции

iz = = = 2,46 см.

Гибкость стойки

λz = lef /iz = 150 / 2,46 = 60,98.

Условная гибкость

Производим проверку устойчивости стойки:

где φ = 0,813 – коэффициент устойчивости при центральном сжатии, принимаемый по табл. 6.1 в зависимости от условной гибкости λz для типа кривой устойчивости ״b״; тип кривой устойчивости зависит от формы сечений и толщины проката (см. табл. 5.10), при условной гибкости λz ≤ 0,4 коэффициент φ принимается равным единице.

Условие выполняется.

Устойчивость стенок балок не требуется проверять, если условная гибкость стенки w не превышает значений:

3,5 – для балок с двухсторонними поясными швами при отсутствии местной нагрузки на пояс балки;

3,2 – для таких же балок с односторонними поясными швами;

2,5 – для балок с двухсторонними поясными швами при наличии местной нагрузки на пояс.

В нашем примере следовательно, требуется проверка стенки на местную устойчивость.

Расчет на устойчивость стенки балки симметричного сечения, укрепленной только поперечными основными ребрами жесткости, при отсутствии местных напряжений смятия и условной гибкости стенки выполняется по формуле

при наличии местного напряжения (см. рис. 17) – по формуле

где σ, и σloc – действующие нормальные, касательные и локальные напряжения в месте соединения стенки с поясом от средних значений M, Q и Fb в пределах отсека; если длина отсека больше его расчетной высоты (a > hw), то M и Q определяются для наиболее напряженного участка отсека с длиной, равной высоте отсека hw; если в пределах отсека M и Q меняют знак, то их средние значения следует вычислять на участке отсека с одним знаком;

σсr , σloc,сr, τсr – критические напряжения, определяемые по СНиП [4].

Проверку местной устойчивости стенки производят в наиболее нагруженных отсеках: первом от опоры; среднем и, при наличии изменения сечения балки по длине, в отсеке с измененным сечением. В курсовой работе достаточно проверить стенку на устойчивость только в отсеке с измененным сечением балки.

Проверка местной устойчивости стенки в среднем отсеке балки (рис. 5.9).

Рис. 5.9. Распределение изгибающих моментов и поперечных сил

в среднем отсеке

Так как а = 3 м > hw = 1,5 м, определяем Mср и Qср по середине условного отсека шириной, равной половине высоты стенки hw, для чего вычисляем величины моментов и поперечных сил на границах расчетного участка (х1 = 7,5 м; х2 = 9 м):

M1 = qx1(lx1)/2 = 115,03 · 7,5 (18 – 7,5) / 2 = 4529,31 кН∙м;

M2 = Mmax = 4658,72 кН∙м;

Q2 = 0;

Mср = (M1 + M2)/2 = (4529,31 + 4658,72) / 2 = 4594,02 кН·м;

Qср = (Q1 + Q2)/2 = 172,55 / 2 = 86,28 кН.

Краевое напряжение сжатия в стенке

σ = Mср(hw/h)/Wx = 4594,02 (150 / 155) /21234 = 20,09 кН/см2.

Среднее касательное напряжение в отсеке

τ = Qср/(hwtw) = 86,28 / (150 ∙ 1,2) = 0,48 кН/см2.

Локальное напряжение σloc = 0.

Критическое нормальное напряжение

где cсr = 33,4 – коэффициент, определяемый по табл. 5.6 в зависимости от значения коэффициента δ, учитывающего степень упругого защемления стенки в поясах:

здесь β = ∞ – при непрерывном опирании плит;

β = 0,8 – в прочих случаях.

Таблица 5.6