
- •1. Общие указания по содержанию и оформлению курсовой работы
- •2. Выбор сталей для строительных конструкций
- •Стали для конструкций зданий и сооружений по гост 27772-88
- •Нормируемые характеристики для категорий поставки
- •Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе проката по гост 27772-88 для стальных конструкций зданий и сооружений
- •Расчетные сопротивления проката смятию торцевой поверхности (при наличии пригонки)
- •Расчетные сопротивления сварных соединений
- •Нормативные и расчетные сопротивления металла швов сварных соединений
- •3. Расчет и конструирование соединений металлических конструкций
- •3.1. Сварные соединения
- •3.1.1. Виды сварных соединений
- •Виды сварных соединений
- •Допустимая наибольшая разность толщин деталей, свариваемых встык без скоса кромок
- •3.1.2. Классификация сварных швов
- •Минимальные катеты cварных швов
- •Виды стыковых швов в элементах стальных конструкций
- •3.1.3. Расчет стыковых соединений
- •Коэффициенты условий работы с
- •3.1.4. Расчет нахлесточных соединений
- •Значения коэффициентов f и z
- •Максимальные катеты швов kf, max у скруглений прокатных профилей
- •3.2. Болтовые соединения
- •ВысокопрочныеГост 22356-77
- •Диаметры отверстий болтов
- •3.2.1. Размещение болтов в соединении
- •Размещение болтов
- •3.2.2. Срезные соединения на болтах нормальной точности
- •Расчетные сопротивления срезу и растяжению болтов
- •Расчетные сопротивления смятию Rвр элементов, соединяемых болтами
- •Площади сечения болтов согласно ст сэв 180-75,
- •Коэффициенты условий работы соединения
- •3.2.3. Фрикционные соединения на высокопрочных болтах
- •Механические свойства высокопрочных болтов по гост 22356 – 77*
- •Коэффициенты трения и надежности h
- •4. Расчет и конструирование элементов балочной клетки
- •Вертикальные предельные прогибы fu элементов балочной клетки
- •4.1. Первый вариант балочной клетки
- •4.1.1. Расчет плоского стального настила
- •Рекомендуемая толщина стального настила
- •4.1.2. Расчет балки настила
- •4.2. Второй вариант балочной клетки
- •4.2.1. Расчет балки настила
- •Площадь пояса
- •4.2.2. Расчет вспомогательной балки
- •Нормативная нагрузка на вспомогательную балку
- •Площадь пояса
- •4.3. Третий вариант балочной клетки
- •4.3.1. Расчет железобетонного настила
- •Толщина железобетонной плиты
- •4.3.2. Расчет балки настила
- •4.4. Четвертый вариант балочной клетки
- •4.4.1. Расчет балки настила
- •4.4.2. Расчет вспомогательной балки
- •Площадь пояса
- •4.5. Выбор оптимального варианта балочной клетки
- •Сравнение вариантов балочной клетки (расход на 1 м2 рабочей площадки)
- •5. Расчет главной балки
- •5.1. Определение усилий
- •5.2. Компоновка сечения
- •Рекомендуемые соотношения высоты балки и толщины стенки
- •Сортамент горячекатаных полос по гост 103-76*
- •Сталь листовая горячекатаная (выборка из гост 19903-74*)
- •Сталь широкополосная универсальная по (по гост 82-70*)
- •Наибольшие значения отношения ширины свеса сжатого пояса bef к толщине tf
- •5.3. Проверка прочности балки
- •5.4. Изменение сечения балки по длине
- •5.5. Проверка общей устойчивости балки
- •5.6. Проверка местной устойчивости элементов балки
- •5.6.1. Проверка местной устойчивости стенки балки
- •Значения коэффициента ссr в зависимости от значения δ
- •5.6.2. Проверка местной устойчивости стенки балки при наличии местных напряжений (σloc 0)
- •Значение коэффициента c1
- •Значение коэффициента c2
- •Значения коэффициента ccr в зависимости от отношения a/hw
- •5.7. Проверка жесткости главной балки
- •5.8. Расчет соединения поясов балки со стенкой
- •5.9. Конструирование и расчет опорной части главной балки
- •Характеристики кривых устойчивости
- •5.10. Проектирование монтажного стыка главной балки
- •5.10.1. Монтажный стык на сварке
- •5.10.2. Монтажный стык на высокопрочных болтах
- •Размеры высокопрочных болтов
- •Механические свойства высокопрочных болтов по гост 22356 – 77*
- •Расчет стыка пояса. Расчетное усилие в поясе определяется по формуле
- •Коэффициенты стыка стенки балок
- •6. Расчет колонн
- •6.1. Подбор сечения сплошной колонны
- •Коэффициенты устойчивости при центральном сжатии
- •Приближенные значения радиусов инерции IX и iy сечений
- •6.2. Подбор сечения сквозной колонны
- •6.2.1. Расчет колонны на устойчивость относительно материальной оси
- •6.2.2. Расчет колонны на устойчивость относительно свободной оси y-y
- •6.2.3. Сквозная колонна с планками
- •6.2.4. Сквозная колонна с решеткой
- •6.3. Конструирование и расчет оголовка колонны
- •6.3.1. Оголовок сплошной колонны
- •6.3.2. Оголовок сквозной колонны
- •6.4. Конструирование и расчет базы колонны
- •6.4.1. Определение размеров опорной плиты в плане
- •Расчетные сопротивления бетона Rb
- •6.4.2. Определение толщины опорной плиты
- •Коэффициенты 1 для расчета на изгиб плиты, опертой по четырем сторонам
- •Коэффициенты для расчета на изгиб плиты, опертой на три канта
- •6.4.3. Расчет траверсы
- •6.4.4. Расчет ребер усиления плиты
- •Заключение
- •Образец титульного листа пояснительной записки
- •Расчетно-пояснительная записка
- •Глоссарий терминов
- •Оглавление
- •1. Общие указания по содержанию и оформлению курсовой
- •3. Расчет и конструирование соединений металлических
- •Темников Виктор Георгиевич проектирование рабочей площадки
- •664074, Иркутск, ул. Лермонтова, 83
Вертикальные предельные прогибы fu элементов балочной клетки
Элемент |
Предельный прогиб fu |
Стальной настил |
l/150 |
Балки настила |
l/200 |
Вспомогательные балки |
l/250 |
Главные балки |
l/400 |
Под предельным состоянием строительных конструкций понимается состояние строительных конструкций здания или сооружения, за пределами которого дальнейшая эксплуатация здания или сооружения опасна, недопустима, затруднена или нецелесообразна либо восстановление работоспособного состояния здания или сооружения невозможно или нецелесообразно.
Расчет конструкций по предельным состояниям направлен на предотвращение достижения любого из предельных состояний здания или сооружения (обеспечение их надежности) в течении всего его срока службы, а также при производстве работ по их возведению.
Нормами проектирования в соответствии с характером предъявляемых к конструкции требований установлены две группы предельных состояний.
Первая группа включает в себя состояния, которые ведут к полной непригодности к эксплуатации конструкций (зданий и сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом вследствие разрушения любого характера (вязкого, хрупкого, усталостного), потери устойчивости формы, потери устойчивости положения, перехода конструкции или здания (сооружения) в геометрически изменяемую систему, качественного изменения конфигурации в результате чрезмерного развития пластических деформаций, сдвигов в соединениях и др. Неразрушимость конструкций должна быть обеспечена на всем протяжении ее работы, поэтому расчет конструкций по несущей способности производится на максимальное воздействие расчетных нагрузок.
Вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций или снижающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы вследствие появления недопустимых перемещений (прогибов, осадок опор, углов поворота), колебаний, трещин и т.п. (при эксплуатации металлических конструкций трещины не допустимы). При расчете конструкций или их элементов по второй группе предельных состояний перемещения и деформации определяют от максимальных нагрузок нормальной эксплуатации.
Под нормальной эксплуатацией понимается эксплуатация, осуществляемая (без ограничений) в соответствии с предусмотренными в нормах или заданиях на проектирование технологическими или бытовыми условиями.
Расчет конструкции обычно состоит из следующих этапов: установление расчетной схемы, сбор нагрузок, определение усилий в элементах конструкции, подбор сечений и проверка напряженно-деформированного состояния конструкции в целом, ее элементов и соединений с целью не допустить ни одного из предельных состояний.
Согласно Своду правил [5] элементы конструкций подразделяются на три класса в зависимости от напряженно-деформированного состояния расчетного сечения:
1-й класс – напряженно-деформированное состояние, при котором напряжения в сечении не превышают расчетное сопротивление стали σ ≤ Ry (упругая работа сечения);
2-й класс – напряженно-деформированное состояние, при котором в одной части сечения σ < Ry, а в другой σ = Ry (упруго-пластическая работа сечения);
3-й класс – напряженно-деформированное состояние, при котором по всей площади сечения σ = Ry (пластификация всего сечения, условный пластический шарнир).
Класс напряженного состояния сечения при проектировании следует назначать в зависимости от допустимых пластических деформаций, целесообразных размеров сечения элемента в целом, толщины стенок и поясных листов. Следует учитывать назначение конструкции, характер нагрузок и воздействий, опасность хрупкого разрушения, агрессивность среды, конструктивные ограничения, степень огнестойкости и другие факторы.
Расчет на прочность балок в упругой стадии работы сечения выполняют по формулам:
– при действии момента в одной из главных плоскостей
;
– при действии в сечении поперечной силы
где M и Q – максимальные изгибающий момент и поперечная сила, найденные от расчетной нагрузки;
Wn,min – момент сопротивления ослабленного сечения;
S – статический момент сдвигаемой части сечения относительно нейтральной оси;
tw – толщина стенки.
Расчет на прочность прокатных разрезных балок в упругопластической стадии работы сплошного сечения из стали с нормативным сопротивлением Ry ≤ 530 МПа, несущих статическую нагрузку, при передаче нагрузки через сплошной жесткий настил, непрерывно опирающийся на сжатый пояс балки и надежно с ним связанный (плоский металлический настил, железобетонные плиты и т.п.), и при ограничении касательных напряжений в месте максимального момента = Q/Aw 0,9Rs (кроме опорных сечений) при изгибе в плоскости наибольшей жесткости (Ix > Iy) относительно оси x-x выполняют по формуле
где Mx – максимальный изгибающий момент, действующий в плоскости наибольшей жесткости;
c1
– коэффициент, учитывающий резерв
несущей способности изгибаемого
элемента, обусловленный пластической
работой материала. Он зависит от формы
сечения, отношения площадей поперечного
сечения пояса и стенки αf
= Af
/Aw,
принимается: c1
= c при
0,5Rs
(влияние касательных напряжений
на переход в предельное состояние
считается несущественным), где с
определяется по табл. 4.2; c1=
1,05βс = 1,05с
при
0,5Rs < 0,9Rs, (зависит от значения средних касательных напряжений в сечении = Q/(twhw), здесь α – коэффициент, равный 0,7 для двутаврового сечения, изгибаемого в плоскости стенки; α = 0 для других типов сечений; tw и hw – толщина и высота стенки сответственно.
Таблица 4.2
Значения коэффициентов с, (cx), cy
Коэффициент |
αf = Af /Aw |
|||
0,25 |
0,5 |
1,0 |
2,0 |
|
с (сx) |
1,19 |
1,12 |
1,07 |
1,04 |
сy |
1,47 |
При расчете сечения в зоне чистого изгиба принимают β = 1 и вместо коэффициента c1
с1m = 0,5 (1 + c1).
Для балок, рассчитываемых с учетом пластических деформаций, расчет на прочность в опорном сечении (при M = 0) выполняют по формуле
где Qx – максимальная поперечная сила вблизи опоры балки;
tw и hw – соответственно толщина и высота стенки.
При ослаблении стенки отверстиями для болтов (при необходимости) левую часть формулы умножают на коэффициент
α = s/(s – d),
где s – шаг отверстий под болты;
d – диаметр отверстия.