
- •Лекция №1 движение электрона в электрическом и магнитном полях.
- •1 Движение электрона в электрическом поле
- •2 Электровакуумные приборы, созданные на основе учета особенностей движения электрона в электрическом поле
- •3 Движение электрона в магнитном поле
- •Вопросы для самопроверки
- •Лекция №3 полупроводники с собственной, электронной и дырочной электропроводностью
- •1 Собственные полупроводники.
- •2 Полупроводники с электронной электропроводностью
- •3 Полупроводники с дырочной электропроводностью
- •Вопросы для самопроверки
- •Лекция №4 построение энергетических моделей различного типа полупроводниковых приборов.
- •1Энергетическая модель p-n перехода (полупроводниковый диод)
- •2 Построение энергетической модели p-n перехода, включенного в обратном направлении.
- •3 Построение энергетической модели p-n перехода ,включенного в прямом направлении.
- •4 Построение энергетической модели p-I-n перехода в случае термодинамического равновесия
- •5Построение энергетической модели p-I-n структуры в случае прямого включения
- •6 Построение энергетической модели p-n- p структуры
- •Вопросы для самопроверки
- •Лекция №5 полупроводниковый диод
- •1.Физическая модель р-n перехода.
- •3 Классификация полупроводниковых диодов.
- •4 Выпрямительные диоды.
- •Вопросы для самопроверки
- •Лекция № 6 разновидности диодов. Одно- и двухполупериодная схемы выпрямления
- •2 Основные параметры стабилитрона.
- •4 Фотодиоды
- •5 Светодиоды
- •6 Однофазные схемы выпрямления
- •Вопросы для самопроверки
- •3 Принцип работы биполярного транзистора.
- •4 Включение транзистора по схеме с оэ
- •5 Предельные параметры.
- •2 Входные и выходные характеристики полевых транзисторов
- •3 Основными параметры полевых транзисторов
- •4 Фототранзисторы.
- •5 Тиристоры.
- •5 Усилители на биполярных транзисторах.
- •Вопросы для самопроверки
- •2 Усилители постоянного тока.
- •3 Упт на базе каскада с оэ.
- •4 Схема симметричного дифференциального каскада.
- •Вопросы для самопроверки
- •3 Особенности оос
- •4 Параллельные и последовательные ос
- •5 Применение оос для температурной стабилизации каскада с общим эмиттером.
- •Вопросы для самопроверки
- •2 Характеристики реального и идеального оу
- •3 Особенность работы оу
- •4 Параметры оу
- •5 Классы оу
- •6 Схема включения оу.
- •Вопросы для самопроверки
- •Лекция №13 усилители (продолжение) линейные оос в операционных усилителях.
- •2 Дифференциальная схема оу.
- •2 Применение электронных ключей
- •Вопросы для самопроверки
- •Лекция № 15 схемы ключей на биполярных и полевых транзисторах.
- •1 Схемы ключей на биполярных транзисторах
- •2 Схемы ключей на полевых транзисторах.
- •Вопросы для самопроверки
- •Лекция №16 общая характеристика импульсных устройств.
- •1 Преимущества импульсного режима работы
- •2 Области применения импульсных устройств и классификация импульсов
- •3 Параметры последовательности.
- •4 Триггер Шмитта
- •Вопросы для самопроверки
- •2 Мультивибраторы на оу.
- •3 Одновибратор.
- •4 Генератор напряжения треугольной и пилообразной формы.
- •Вопросы для самопроверки
Вопросы для самопроверки
Поясните принцип работы ключа на биполярном
транзисторе?
При каких условиях ключ на биполярном
транзисторе будет разомкнут?
Что является недостатками схемы ключа на биполярном
транзисторе?
Охарактеризуйте схемы ключей на полевых транзисторах
Проведите сравнительный анализ схем ключей на биполярных и полевых транзисторах
Лекция №16 общая характеристика импульсных устройств.
Цель: изучить основы импульсного режима работы, а также формирователи импульсов.
Задачи:
Рассмотреть преимущества импульсного режима
Провести классификацию импульсов
Изучить принцип действия триггера Шмитта
1 Преимущества импульсного режима работы
Импульсом - называется кратковременное изменение тока или напряжения до своего амплитудного значения, после которого следует пауза.
Импульсный режим работы имеет ряд преимуществ над непрерывным:
в импульсном режиме может быть достигнута значительная мощность во время действия импульсов при малом значении средней мощности устройства. В результате габариты и масса электронной аппаратуры при использовании импульсного режима могут быть значимо снижены;
позволяет ослабить влияние температуры и разброса параметров полупроводниковых приборов на работу устройств, так как приборы в них работают, как правило, в ключевом режиме;
позволяет значимо повысить пропускную способность и помехоустойчивость электронной аппаратуры. Пропускная способность - наибольшая возможная скорость передачи информации, а помехоустойчивость - способность аппаратуры правильно функционировать в условиях действиях помех.
для реализации импульсных устройств, требуется большое число сравнительно простых однотипных элементов, легко выполняемых методами интегральной технологии. Это позволяет повысить надёжность, уменьшить габариты и массу электронной аппаратуры.
2 Области применения импульсных устройств и классификация импульсов
Импульсные устройства широко распространены в вычислительной технике, радиолокации, телевидении, автоматике, промышленной электронике.
Импульсы бывают различной формы, наиболее часто встречаются прямоугольные, трапециевидные, треугольные, экспоненциальные и другой формы. Они также бывают положительной и отрицательной полярности. Часто импульсы встречаются в виде серий или последовательности.
Серия как правило имеет конечное число импульсов. В последовательности число импульсов не ограниченно.
Последовательности бывают: периодические, квазипериодические, непериодические.
В периодических одинаковые импульсы повторяются через равные промежутки времени.
В квазипериодических через равные промежутки времени повторяются не все параметры импульсов (длительность, амплитуда).
Непериодическими называются такие последовательности которые не подчиняются закону периодичности. Они могут быть случайные либо детерминированные т.е. подчинятся какому ни будь математическому закону.
Все импульсы делятся на видеоимпульсы и радиоимпульсы.
Видеоимпульсом называют кратковременное изменение постоянного тока или напряжения. Радиоимпульсом - называют высокочастотные колебания огибающая которого имеет форму видеоимпульса.