Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГИС тема 1.4.doc
Скачиваний:
33
Добавлен:
11.11.2018
Размер:
214.02 Кб
Скачать
    1. Другие методы интерполяции

Рассмотрим три метода интерполяции: метод обратных взвешенных расстояний (ОВР), метод поверхности тренда и кригинг – одни из самых известных.

Метод ОВР исходит из предположения, что чем ближе друг к другу находятся точки данных, тем ближе их значения. Например, двигаясь по склону холма, вы можете отметить большее сходство в значениях высоты в близлежащих к вашему текущему положению точках по сравнению с точками, которые удалены гораздо дальше. То же можно было бы сказать, если бы вы двигались по равнине. Для более точного описания топографии нам нужно выбрать точки окрестности, которые демонстрируют это сходство поверхности. Это достигается несколькими приемами поиска, включая определение окрестности на заданном удалении от каждой точки, предварительным заданием числа точек выборки данных или выбором определенного числа точек в квадрантах или октантах (когда, например, для интерполяции используется одна точка из каждого квадранта).

Какой бы метод ни использовался, компьютер должен, измерять расстояние между каждой парой точек и от каждой начальной точки. Затем значение высоты в каждой точке взвешивается в зависимости от квадрата расстояния, так что более близкие точки вносят больший вклад в определение интерполируемой высоты по сравнению с более удаленными. Существуют многие модификации этого подхода. Одни методы сокращают объем вычислений применением "поиска с обучением", другие используют в качестве весового коэффициента вместо второй степени третью или более высокую, третьи учитывают барьеры, представляющие береговую линию, скалы или иные непреодолимые объекты, которые могут воздействовать на результаты интерполяции. Как и при использовании барьеров в других задачах моделирования, процесс интерполяции не может распространяться через барьер.

В некоторых случаях нас больше интересует общие тенденции поверхности, нежели точное моделирование мелких неровностей. Например, нас может интересовать общее распределение населения по стране для демографического исследования, или подход к каменноугольному пласту с поверхности, чтобы определить, сколько необходимо удалить поверхностного грунта. Наиболее распространенный подход к такой характеристике поверхности называется поверхностью тренда.

Как и в методе ОВР используются наборы точек в пределах заданной окрестности, которая строится любым способом из перечисленных для методов со взвешиванием. В пределах каждой окрестности строится поверхность наилучшего приближения на основе математических уравнений, таких как полиномы или сплайны. Эти уравнения являются нелинейными зависимостями, которые аппроксимируют заданным числовые последовательности. Чтобы построить поверхность тренда, каждое из значений в окрестности подставляется в уравнение. Из уравнения, использованного для построения поверхности наилучшего приближения, получается одно значение и присваивается интерполируемой точке. Процесс продолжается для других целевых точек; кроме того, поверхность тренда может быть расширена на все покрытие.

Число, присваиваемое целевой ячейке, может быть простым средним всех значений поверхности в окрестности, или оно может быть взвешенным с учетом определенного направления, в котором ориентирован тренд. Поверхности тренда могут быть плоскими, показывая общую тенденцию для всего покрытия, или они могут быть более сложными. Тип используемого уравнения (или степень полинома) определяет величину волнистости поверхности. Чем проще выглядит поверхность тренда, тем меньший порядок, как говорят, она имеет. Например, поверхность тренда первого порядка будет выглядеть как плоскость, простирающаяся под некоторым углом по всему покрытию, т.е. она имеет тенденцию в одном направлении. Если поверхность имеет один изгиб, то такую поверхность называют поверхностью тренда второго порядка (рисунок 1.25), и т.д.

Рисунок 1.25 ‑ Порядки поверхностей тренда. Поверхности 1-го, 2-го и 3-го порядка в зависимости от сложности полинома, используемого для представления поверхности.

Последний рассматриваемый метод интерполяции, кригинг (kriging), оптимизирует процедуру интерполяции на основе статистической природы поверхности. Кригинг использует идею регионализированной переменной (regionalized variable), которая изменяется от места к месту с некоторой видимой непрерывностью, но не может моделироваться только одним математическим уравнением. Оказывается, многие топографические поверхности подходят под это описание, также как и поверхности изменения качества руды, вариации качества почв и даже некоторые показатели растительности.

Метод кригинг обрабатывает поверхности на основе трех независимых величин. Первая, называемая дрейфом или структурой поверхности, представляет поверхность как общий тренд в определенном направлении. Далее, кригинг предполагает, что имеются небольшие отклонения от этой общей тенденции, вроде маленьких пиков и впадин, которые являются случайными, но все же связанными друг с другом пространственно (т.е. они пространственно коррелированны). Наконец, мы имеем случайный шум, который не связан с общей тенденцией и не имеет пространственной автокорреляции. Можно проиллюстрировать этот набор значений посредством аналогии: когда мы идем вверх по горе, рельеф местности изменяется в восходящем направлении между отправной точкой и вершиной; это – дрейф. По пути мы встречаем локальные снижения и повышения, сопровождаемые случайными, но коррелированными высотами. Также по пути нам встречаются камни, которые приходится переступать, их можно представлять как шум значения высоты, так как они не связаны непосредственно с основной поверхностной структурой, прежде всего создающей изменения высоты.

Каждой из трех переменных обрабатывается по отдельности. Дрейф оценивается с использованием математического уравнения, которое наиболее близко представляет общее изменение поверхности, во многом подобно поверхности тренда. Ожидаемое значение высоты измеряется с использованием вариограммы (рисунок 1.25), на которой по горизонтальной оси откладывается расстояние между отсчетами, называемое лагом, вертикальная ось несет так называемую полудисперсию, которая определяется как половина дисперсии (квадрата стандартного отклонения) между каждым значением высоты и его соседями.

Таким образом, полудисперсия является мерой взаимосвязи значений высоты, зависящей от того, как близко друг к другу они находятся. Затем через точки данных проводится кривая наилучшего приближения, давая нам меру пространственно-коррелированной случайной компоненты. Посмотрев внимательно на график полудисперсии, вы можете заметить, что когда расстояние между точками отсчета высоты мало, полудисперсия тоже мала. Это значит, что значения высоты близки и, следовательно, взаимосвязаны вследствие их пространственной близости. С ростом расстояния между точками растет и полудисперсия, показывая быстрый спад пространственной корреляции значений. Наконец достигается критическое значение лага, известное как предельный радиус корреляции, при котором дисперсия достигает предела и в дальнейшем остается постоянной. Чем ближе друг к другу находятся отсчеты внутри диапазона роста (т.е. от нуля до точки прекращения роста кривой на графике), тем более похожими они должны быть. За пределами радиуса корреляции расстояние между точками не имеет значения, они совершенно независимы на любом удалении, превышающем радиус. Это говорит о том, какая окрестность должна быть использована (например, в ОВР-интерполяции), чтобы охватить все точки, значения высоты которых будут взаимосвязаны.

Рисунок 1.25 ‑ Пример вариограммы. Она показывает связь между точками данных и аппроксимирующей линией.

Третьим по важности моментом графика является то, что аппроксимирующая кривая не проходит через начало координат. По идее, если между отсчетами нет расстояния, то не должно быть и дисперсии, так как отсчеты являются по сути одной точкой. Но нужно помнить, что кривая является оценочной. Разница между нулевой дисперсией при нулевом лаге и предсказываемым положительным значением является остаточной, пространственно некоррелированной "шумовой" дисперсией, которая называется остаточной дисперсией. Эта остаточная дисперсия объединяет дисперсию ошибок измерения с пространственной дисперсией, которая имеет место на расстояниях, гораздо меньших, чем интервал взятия отсчетов, и которые в дальнейшем не могут быть устранены.

Теперь, имея три составляющие регионализированной переменной, определенные вариограммой, можно определить веса, необходимые для выполнения интерполяции в локальных окрестностях. Однако, в отличие от ОВР, веса для интерполяции в пределах окрестностей выбираются с целью минимизации дисперсии оценки для всех комбинаций отсчетов высоты. Эта дисперсия может быть получена непосредственно из модели, по которой была прежде создана вариограмма.

Кригинг часто дает довольно точные оценки пропущенных значений, но эта точность обходится ценой времени и вычислительных ресурсов. Но даже при этом кригинг имеет еще одно преимущество перед другими методами интерполяции, – он не только дает интерполированные значения, но также и оценку возможной ошибки этих значений. Это может навести на мысль, что данный метод следует применять повсеместно, но увы. Когда мы имеем дело с большим уровнем локального шума из-за ошибок измерений или большие вариации высоты между отсчетами, в данном методе становится трудным построение кривой полудисперсии. А в таких условиях результаты кригинга будут не лучше, чем полученные другими методами.

В векторных моделях данных (чаще всего TIN) процесс интерполяции проще всего выполняется выборкой точек с их значениями высоты и преобразованием их в точечную матрицу высот. И уже к этому точечному покрытию может быть применен один из описанных алгоритмов. В действительности, сама модель TIN может выполнять интерполяцию. В растровых покрытиях значения высоты обычно соотносятся с точками, расположенными внутри каждой ячейки (например, в центре). Для интерполяции мы можем использовать именно эти точки и действовать по одному из описанных выше методов. В этом случае интерполируемым ячейкам растра присваиваются значения высоты, полученные для представляющих их точек. Если ваша ГИС не содержит нужного алгоритма, то, как правило, вы можете преобразовать точечные покрытия в форму, понимаемую специализированным программным обеспечением, рассчитанным на работу с пространственными данными. Затем его выходные данные могут быть преобразованы обратно для дальнейшего анализа внутри ГИС.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]