
ТЕХНИЧЕСКОЕ ЗАДАНИЕ
Рассчитать генератор пилообразного напряжения, обеспечивающий параметры из таблицы ниже.
Таблица. Данные для курсовой работы
Вариант |
Параметры | ||||
Тип |
|
|
|
| |
1 |
Ждущий |
12 |
20 |
3 |
2 |
СОДЕРЖАНИЕ
Лист
Введение 4
1. Принцип построения генераторов ПН 5
2. Методы линеаризации пилообразного напряжения 8
3. ГПН повышенной линейности 11
4. Описание работы схемы ГПН 13
5. Расчет схемы 17
Заключение 20
Список использованных источников 21
Приложение 1. Схема электрическая принципиальная
Приложение 2. Перечень элементов
Введение
Генераторы пилообразного напряжения (ГПН) и тока находят широкое применение в автоматике, телевидении, технике связи и других областях прикладной электроники.
Генераторами называют устройства, которые вырабатывают электрические сигналы посредством преобразования энергии источника постоянного тока в энергию электрических колебаний /1/.
Генераторы могут работать в режиме самовозбуждения или ждущем режиме, когда период следования импульсов пилообразного напряжения определяется запускающими импульсами. Режим самовозбуждения колебания вырабатываются устройством без приложения к нему дополнительного сигнала.
Напряжение пилообразной формы - это напряжение, которое в течение определенного времени нарастает или убывает пропорционально времени (линейно), а затем возвращается к исходному уровню (рис. 1).
Рис. 1. Параметры ПН
Пилообразное
напряжение может быть линейно нарастающим
или линейно падающим. Характеризуется
основными параметрами: линейностью
рабочего участка выходного напряжения;
длительностями прямого (рабочего)
и обратного хода
;
амплитудой выходного напряжения
1. Принципы построения генераторов пн
Независимо от практической реализации все ГНП можно представить в виде единой эквивалентной схемы (рис. 2).
В нее входит источник питания E, зарядный резистор R, который можно рассматривать как внутреннее сопротивление источника питании, конденсатор С – накопитель энергии, электронный ключ К и разрядный резистор r сопротивлением, равным внутреннему сопротивлению замкнутого ключа.
Рис. 2. Эквивалентная схема ГПН
В исходном состоянии ключ К замкнут и на конденсаторе устанавливается начальный уровень напряжения
.
При размыкании ключа конденсатор начинает разряжаться через и напряжение на нем меняется по экспоненциальному закону
,
где
- постоянная времени цепи зарядки
конденсатора.
За
время, равное длительности прямого хода
,
напряжение на конденсаторе увеличивается
до амплитудного значения
и становится равным
.
Через время прямого хода ключ замыкается, и конденсатор разряжается. Напряжение на конденсаторе при этом изменяется по закону
,
где
- постоянная времени цепи разрядки
конденсатора.
На практике зарядное сопротивление существенно больше разрядного, что обуславливает восстановление начального уровня напряжения на конденсаторе за время малое по сравнению с длительностью прямого хода.
На рис. 3 показана схема простейшего ГПН на биполярном транзисторе.
Рис. 3. Простейший ГПН
Получение ПН
основано на формировании последовательности
перезарядов конденсатора. В данной
схеме предполагается работа транзистора
в ключевом режиме. Если транзистор
закрыт, происходит заряд конденсатора
в течение времени
,
когда транзистор переходит в режим
насыщения, осуществляется быстрый
разряд конденсатора через открытые
переходы транзистора в течение времени
обратного хода
.
Во время заряда, напряжение на конденсаторе равно
,
.
Коэффициент нелинейности в данном случае равен
,
где
,
- скорости напряжения в начале рабочего
хода и в конце.
Для рассматриваемого
примера
,
поэтому, коэффициент нелинейности равен
.
Коэффициент
нелинейности можно выразить через
значения токов. Если учесть, что
,
то можно записать.
.
Из-за
зависимости рабочего тока конденсатора
от напряжения на нем, в простейших ГПН
невозможно получить хорошую линейность
при большом коэффициенте использования
напряжения (отношение амплитуды
пилообразного напряжения к напряжению
питания). Известны два метода устранения
этого недостатка:
- метод применения нелинейного токостабилизирующего сопротивления в перезарядной цепи конденсатора;
- метод применения компенсирующей ЭДС.
Рассмотрим некоторые примеры данных подходов.
2. Методы линеаризации пилообразного напряжения
Пример построения схемы генератора с постоянным током заряда приведен на рис. 4.
Рис. 4. ГПН с постоянным током заряда
Схема данного ГПН, отличается от приведенной ранее, наличием дополнительного элемента – полевого транзистора VT2, который выполняет роль стабилизатора тока. Полевой транзистор поддерживает постоянным ток в резисторе зарядной цепи. Если ток уменьшается, то уменьшается и падение напряжения на резисторе, а это вызывает компенсирующее увеличение тока через транзистор за счет уменьшения сопротивления канала. Поскольку напряжение на затворе меняется в широких пределах, необходимо выбирать полевой транзистор с максимально возможным напряжением отсечки.
Схема еще одного простого генератора пилообразного напряжения со стабилизатором тока в цепи разряда конденсатора показана на рис. 5. Заряд конденсатора осуществляется через транзистор VT1 и сопротивление R. За время заряда напряжение на конденсаторе достигает практически напряжения источника питания. Когда приходит на базу транзисторов нулевой уровень, первый транзистор закрывается, а транзистор VT2 переходит в режим генератора стабильного тока (ГСТ) и через него протекает стабильный постоянный ток разряда конденсатора.
Рис. 5. ГПН с ГСТ на биполярном транзисторе
Другим подходом получения линейного напряжения ГПН, как отмечалось ранее, является стабилизация тока конденсатора с помощью обратных связей (рис. 6).
Здесь элементы C1, VT1, R1 образуют электронный ключ. Повторитель на VT2 является элементом обратной связи.
В исходном состоянии транзистор VT1 закрыт и конденсатор С3 заряжается через открытый диод и сопротивление коллектора. Изменение напряжения на конденсаторе передается через повторитель, а также конденсатор С2, на диод, который закрывается. После закрытия диода процесс заряда С3 определяется напряжением на С2, который выступает источником постоянного напряжения. Так как напряжение на верхнем выводе R2 следит за напряжением на конденсаторе, то ток заряда постоянный.
При
положительном импульсе транзистор VT1
открывается и конденсатор С3 разряжается
через него, таким образом, формируется
обратный ход пилообразного напряжения,
а конденсатор С2 заряжается до своего
первоначального состояния через открытый
диод.
Рис. 6. ГПН со следящей обратной связью