
- •Часть 1
- •В.Г.Олифер, н.А.Олифер. Сетевые операционные системы. Учебное пособие.-сПб.:бхв-Петербург, 2006.-536с.
- •В.А.Шеховцов. Операційні системи. Підручник .-к.:Виканавча група внv. 2005. 576с.
- •Столлингс в. Операционные системы. М.: Вильямс, 2001. -672с. Оглавление
- •Раздел 1 введение
- •1.1. Понятие операционной системы, ее назначение и функции
- •1.1.1. Понятие операционной системы
- •1.1.2. Назначение операционной системы
- •1.1.3. Операционная система как расширеная машина
- •1.1.4. Операционная система как распределитель ресурсов
- •1.2. История развития операционных систем
- •1.3. Классификация современных операционных систем
- •1.4. Функциональные компоненты операционных систем
- •1.4.1. Управление процессами и потоками
- •1.4.2. Управление памятью
- •1.4.3. Управление вводом-выводом
- •1.4.4. Управление файлами и файловые системы
- •1.4.5. Сетевая поддержка
- •1.4.6. Безопасность данных
- •1.4.7. Интерфейс пользователя
- •Раздел 2
- •2.1. Базовые понятия архитектуры операционных систем
- •2.2. Реализация архитектуры операционных систем
- •2.2.1. Монолитные системы
- •2.2.2. Многоуровневые системы
- •2.2.3. Системы с микроядром
- •2.2.4. Концепция виртуальных машин
- •2.3. Операционная система и ее окружение
- •2.3.1. Взаимодействие ос и аппаратного обеспечения
- •2.3.2. Взаимодействие ос и выполняемого программой
- •2.4. Особенности архитектур
- •Раздел 3
- •3.1. Базовые понятия процессов и потоков
- •3.1.1. Процессы и потоки в современных ос
- •3.1.2. Модели процессов и потоков
- •3.1.3. Составные элементы процессов и потоков
- •3.2. Многопотоковость и ее реализация
- •3.2.1. Понятие параллелизма
- •3.2.2. Виды параллелизма
- •3.2.3. Преимущества и недостатки многопотоковости
- •3.2.4. Способы реализации модели потоков
- •3.2.5 Состояния процессов и потоков
- •3.3 Описание процессов и потоков
- •3.3.1. Управляющие блоки процессов и потоков
- •3.3.2. Образы процесса и потока
- •3.4. Переключение контекста и обработка прерываний
- •3.4.1. Организация переключения контекста
- •3.4.2. Обработка прерываний
- •3.5 Создание и завершение процессов и потоков
- •3.5.1 Создание процессов
- •3.5.2. Иерархия процессов
- •3.5.3. Управление адресным пространством во время создания процессов
- •3.5.4. Особенности завершения процессов
- •3.5.5. Синхронное и асинхронное выполнение процессов
- •3.5.6. Создание и завершение потоков
- •3.6 Управление потоками в Linux
- •3.6.1. Базовая поддержка многотопотоковости
- •3.6.2. Особенности новой реализации многопоточности в ядре Linux
- •3.6.3. Потоки ядра Linux
- •3.7 Управление процессами в Windows хр
- •3.7.1. Составные элементы процесса
- •3.7.2. Структуры данных процесса
- •3.7.3. Создание процессов
- •3.7.4. Завершение процессов
- •3.7.5. Процессы и ресурсы. Таблица объектов процесса
- •3.8 Управление потоками в Windows хр
- •3.8.1. Составные элементы потока
- •3.8.2. Структуры данных потока
- •3.8.3. Создание потоков
- •Раздел 4
- •4.1. Виды межпроцесорного взаимодействия
- •4.1.1. Методы распределения памяти
- •4.1.2. Методы передачи сообщений
- •4.1.3. Технология отображаемой памяти
- •4.1.4. Особенности межпроцесорного взаимодействия
- •4.2. Базовые механизмы межпроцессового взаимодействия
- •4.2.1. Межпроцессовое взаимодействие на базе общей памяти
- •4.2.2. Основы передачи сообщений
- •4.2.3. Технологии передачи сообщений
- •Глава 5
- •5.1 Функции ос по управлению памятью
- •5.2 Типы адресов
- •5.3 Алгоритмы распределения памяти
- •5.3.1 Распределение памяти фиксированными разделами
- •5.3.2 Распределение памяти динамическими разделами
- •5.3.3 Перемещаемые разделы
- •5.4 Свопинг и виртуальная память
- •5.4.1 Страничное распределение
- •5.4.2 Сегментное распределение
- •5.4.3 Сегментно-страничное распределение
- •5.5 Разделяемые сегменты памяти
- •5.6 Кэширование данных
- •5.6.1 Иерархия запоминающих устройств
- •5.6.3 Принцип действия кэш-памяти
- •5.6.4 Проблема согласования данных
- •5.6.5 Способы отображения основной памяти на кэш
- •5.6.6 Схемы выполнения запросов в системах с кэш-памятью
- •Раздел 6 Логическая и физическая организация файловой системы
- •6.1 Логическая организация файловой системы
- •6.1.1 Цели и задачи файловой системы
- •5.1.2 Типы файлов
- •5.1.3 Иерархическая структура файловой системы
- •5.1.4 Имена файлов
- •5.1.5 Монтирование
- •5.1.6 Атрибуты файлов
- •5.1.7 Логическая организация файла
- •5.2 Физическая организация файловой системы
- •5.2.1 Диски, разделы, секторы, кластеры
- •5.2.2 Физическая организация и адресация файла
- •5.2.3 Физическая организация fat
- •5.2.4 Физическая организация ntfs
5.1.5 Монтирование
В общем случае вычислительная система может иметь несколько дисковых устройств. Даже типичный персональный компьютер обычно имеет один накопитель на жестком диске, один накопитель на гибких дисках и накопитель для компакт-дисков. Мощные же компьютеры, как правило, оснащены большим количеством дисковых накопителей, на которые устанавливаются пакеты дисков. Более того, даже одно физическое устройство с помощью средств операционной системы может быть представлено в виде нескольких логических устройств, в частности путем разбиения дискового пространства на разделы. Возникает вопрос, каким образом организовать хранение файлов в системе, имеющей несколько устройств внешней памяти?
Первое решение состоит в том, что на каждом из устройств размещается автономная файловая система, то есть файлы, находящиеся на этом устройстве, описываются деревом каталогов, никак не связанным с деревьями каталогов на других устройствах. В таком случае для однозначной идентификации файла пользователь наряду с составным символьным именем файла должен указывать идентификатор логического устройства.
Примером такого автономного существования файловых систем является операционная система MS-DOS, в которой полное имя файла включает буквенный идентификатор логического диска. Так, при обращении к файлу, расположенному на диске А, пользователь должен указать имя этого диска: A:\privat\letter\uni\let1 .doc.
Другим вариантом является такая организация хранения файлов, при которой пользователю предоставляется возможность объединять файловые системы, находящиеся на разных устройствах, в единую файловую систему, описываемую единым деревом каталогов. Такая операция называется монтированием. Рассмотрим, как осуществляется эта операция на примере ОС UNIX.
Среди всех имеющихся в системе логических дисковых устройств операционная система выделяет одно устройство, называемое системным. Пусть имеются две файловые системы, расположенные на разных логических дисках (рис. 5.2), причем один из дисков является системным.
Рис. 5.2 а Файловая система 1 до монтирования
Файловая система, расположенная на системном диске, назначается корневой. Для связи иерархий файлов в корневой файловой системе выбирается некоторый существующий каталог, в данном примере — каталог man. После выполнения монтирования выбранный каталог man становится корневым каталогом второй файловой системы. Через этот каталог монтируемая файловая система подсоединяется как поддерево к общему дереву (рис. 5.3)
Рис. 5.2 б Файловые системы 2 до монтирования
Рис. 5.3 Общая файловая система после монтирования
После монтирования общей файловой системы для пользователя нет логической разницы между корневой и смонтированной файловыми системами, в частности именование файлов производится так же, как если бы она с самого начала была единой.
5.1.6 Атрибуты файлов
Понятие «файл» включает не только хранимые им данные и имя, но и атрибуты.
Атрибуты — это информация, описывающая свойства файла.
Примеры возможных атрибутов файла:
-
тип файла (обычный файл, каталог, специальный файл и т. п.);
-
владелец файла;
-
создатель файла;
-
пароль для доступа к файлу;
-
информация о разрешенных операциях доступа к файлу;
-
времена создания, последнего доступа и последнего изменения;
-
текущий размер файла;
-
максимальный размер файла;
-
признак «только для чтения»;
-
признак «скрытый файл»;
-
признак «системный файл»;
-
признак «архивный файл»;
-
признак «двоичный/символьный»;
-
признак «временный» (удалить после завершения процесса);
-
признак блокировки;
-
длина записи в файле;
-
указатель на ключевое поле в записи;
-
длина ключа.
Набор атрибутов файла определяется спецификой файловой системы: в файловых системах разного типа для характеристики файлов могут использоваться разные наборы атрибутов.
Например, в файловых системах, поддерживающих неструктурированные файлы, нет необходимости использовать три последних атрибута в приведенном списке, связанных со структуризацией файла. В однопользовательской ОС в наборе атрибутов будут отсутствовать характеристики, имеющие отношение к пользователям и защите, такие как владелец файла, создатель файла, пароль для доступа к файлу, информация о разрешенном доступе к файлу.
Пользователь может получать доступ к атрибутам, используя средства, предоставленное для этих целей файловой системой. Обычно разрешается читать значения любых атрибутов, а изменять —только некоторые.
Например, пользователь может изменить права доступа к файлу (при условии, что он обладает необходимыми для этого полномочиями), но изменять дату создания или текущий размер файла ему не разрешается.
Значения атрибутов файлов могут непосредственно содержаться в каталогах, как это сделано в файловой системе MS-DOS (рис. 5.4, а). На рисунке представлена структура записи в каталоге, содержащая простое символьное имя и атрибуты файла. Здесь буквами обозначены признаки файла: R — только для чтения, А — архивный, Н — скрытый, S — системный.
Другим вариантом является размещение атрибутов в специальных таблицах, когда в каталогах содержатся только ссылки на эти таблицы. Такой подход реализован, например, в файловой системе ufs ОС UNIX. В этой файловой системе структура каталога очень простая. Запись о каждом файле содержит короткое символьное имя файла и указатель на индексный дескриптор файла, так называется в ufs таблица, в которой сосредоточены значения атрибутов файла (рис. 5.4, б).
Рис. 5.4 Структура записи каталогов: а) в MS-DOS и б) в OC UNIX
В том и другом вариантах каталоги обеспечивают связь между именами файлов и собственно файлами. Однако подход, когда имя файла отделено от его атрибутов, делает систему более гибкой. Например, файл может быть легко включен сразу в несколько каталогов. Записи об этом файле в разных каталогах могут содержать разные простые имена, но в поле ссылки будет указан один и тот же номер индексного дескриптора.