Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Laboratornye_IIS2007.doc
Скачиваний:
51
Добавлен:
10.11.2018
Размер:
281.6 Кб
Скачать

Задание.

1. Создать в рабочем пространстве MATLAB двухслойную нейронную сеть с прямой передачей сигнала и линией задержки [0 1]; число нейронов на втором слое –1; на первом – варьируется; функции активации – tansig, purelin; диапазон изменения входа [0 10].

2. Задать последовательность входов и целей , содержащих не менее 10 значений.

3. Обучить сеть (не менее 30 циклов) и протестировать с использованием заданной последовательности входа.

Лабораторная работа 4

Линейные сети

Линейный слой

Линейные слои находят применение при решении задач аппроксимации, фильтрации и предсказания сигналов, построении моделей динамических систем в задачах управления. Функция newlin() формирует нейронную сеть в виде линейного слоя.

Синтаксис:

net = newlin(PR, s, id, lr);

net = newlin(PR, s, o, P);

Входные аргументы:

PR – массив размера Rх2 минимальных и максимальных значений для R векторов входа;

s – число нейронов;

id – описание линии задержки на входе сети, по умолчанию [0];

lr- параметр скорости настройки, по умолчанию 0.01.

Выходные аргументы:

net – объект класса network object с архитектурной линейного слоя.

Функция net = newlin(PR, s, o, P), где Р –матрица векторов входа, формирует линейный слой с параметром скорости настройки, гарантирующим максимальную степень устойчивости слоя для данного входа Р.

Пример:

Сформировать линейный слой, который для заданного входа воспроизводит заданный отклик системы.

Сформируем последовательности векторов входа и цели:

Р = {0 -1 1 1 0 -1 1 0 0 1};

T = {0 -1 0 2 1 -1 0 1 0 1};

Архитектура линейного входа: линия задержки типа [0 1 2], 1 нейрон, вектор входа с элементами из диапазона [-1 1], параметр скорости настройки 0.01.

net = newlin([-1 1], 1, [0 1 2], 0.01);

gensim(net)

Обучим сеть в течении 100 циклов и промоделируем, используя в качестве теста обучающую последовательность входа:

net.trainParam.epochs = 100;

net = train(net, P, T);

Y = sim(net, P);

Алгоритм:

Линейный слой использует функцию взвешивания dotprod, функцию накопления потенциала netsum и функцию активации purelin. Слой характеризуется матрицей весов и вектором смещений, которые инициализируются М-функцией initzero.

Адаптация и обучение выполняются М-функциями adaptwb и trainwb, которые моделируют веса и смещения, используя М-функцию learnwh, до тех пор пока не будет достигнуто требуемое значение критерия качества обучения в виде средней квадратичной ошибки, вычисляемой М-функцией mse.

Задание.

1. Создать в рабочем пространстве MATLAB линейный слой со следующей архитектурой: линия задержки типа [0 1 2], 1 нейрон, вектор входа с элементами из диапазона [0 1], параметр скорости настройки 0.01.

2. Сформулировать две обучающие последовательности Р1, Т1 и Р2, Т2, содержащих не менее 10 значений.

3. Обучить сеть с использованием:

  • только обучающей последовательности Р1, Т1 (не менее 100 циклов);

  • всего объема обучающих данных, соответствующего объединению векторов входа Р3 = [P1 P2] и векторов целей T3 = [T1 T2].

и выполнить моделирование сети для всех значений входа (для обоих случаев), объединяющих векторы Р1 и Р2 – Y = sim(net, [P1 P2]) (для повторной инициализации сети использовать команду net = init(net)).

  1. Сравнить результаты моделирования, сделать вывод.

Лабораторная работа 5

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]