
шпоргалка / подготовка к ЭКЗАМЕНУ / 46.Основные механические свойства. Модуль сдвига
.docx
46.Основные механические свойства. Модуль сдвига
Механические свойства материалов,
совокупность показателей, характеризующих сопротивление материала воз действующей на него нагрузке, его способность деформироваться при этом, а также особенности его поведения в процессе разрушения. В соответствии с этим М. с. м. измеряют напряжениями (обычно в кгс/мм2 или Мн/м2), деформациями (в %), удельной работой деформации и разрушения (обычно в кгс×м/см2 или Мдж/м2), скоростью развития процесса разрушения при статической или повторной нагрузке (чаще всего в мм за 1 сек или за 1000 циклов повторений нагрузки, мм/кцикл). М. с. м. определяются при механических испытаниях образцов различной формы.
В общем случае материалы в конструкциях могут подвергаться самым различным по характеру нагрузкам (рис. 1): работать нарастяжение, сжатие, изгиб, кручение, срез и т. д. или подвергаться совместному действию нескольких видов нагрузки, например растяжению и изгибу. Также разнообразны условия эксплуатации материалов и по температуре, окружающей среде, скорости приложения нагрузки и закону её изменения во времени. В соответствии с этим имеется много показателей М. с. м. и много методов механических испытаний. Для металлов и конструкционных пластмасс наиболее распространены испытания на растяжение, твёрдость, ударный изгиб; хрупкие конструкционные материалы (например, керамику, металлокерамику) часто испытывают на сжатие и статический изгиб; механические свойства композиционных материалов важно оценивать, кроме того, при испытаниях на сдвиг.
Диаграмма деформации. Приложенная к образцу нагрузка вызывает его деформацию. Соотношения между нагрузкой и деформацией описываются т. н. диаграммой деформации (рис. 2). Вначале деформация образца (при растяжении — приращение длины Dl ) пропорциональна возрастающей нагрузке Р, затем в точке n эта пропорциональность нарушается, однако для увеличения деформации необходимо дальнейшее повышение нагрузки Р; при Dl > Dlв деформация развивается без приложения усилия извне, при постепенно падающей нагрузке. Вид диаграммы деформации не меняется, если по оси ординат откладывать напряжение
а по оси абсцисс — относительное удлинение
(F0 и l0 — соответственно начальная площадь поперечного сечения и расчётная длина образца).
Сопротивление материалов измеряется напряжениями, характеризующими нагрузку, приходящуюся на единицу площади поперечного сечения образца
в кгс/мм2. Напряжение
при котором нарушается пропорциональный нагрузке рост деформации, называется пределом пропорциональности. При нагрузкеР < Рn разгрузка образца приводит к исчезновению деформации, возникшей в нём под действием приложенного усилия; такая деформация называется упругой. Небольшое превышение нагрузки относительно Рn может не изменить характера деформации — она по-прежнему сохранит упругий характер. Наибольшая нагрузка, которую выдерживает образец без появления остаточной пластической деформации при разгрузке, определяет предел упругости материала:
У конструкционных неметаллический материалов (пластмассы, резины) приложенная нагрузка может вызвать упругую, высокоэластическую и остаточную деформации. В отличие от упругой, высокоэластическая деформация исчезает не сразу после разгрузки, а с течением времени. Высокопрочные армированные полимеры (стеклопластики, углепластики и др.) разрушаются при удлинении 1—3%. На последних стадиях нагружения у некоторых армированных полимеров появляется высокоэластическая деформация. Высокоэластический модуль ниже модуля упругости, поэтому диаграмма деформации в этом случае имеет тенденцию отклоняться к оси абсцисс.
Упругие свойства. В упругой области напряжение и деформация связаны коэффициентом пропорциональности. При растяжении s = Еd, где Е — т. н. модуль нормальной упругости, численно равный тангенсу угла наклона прямолинейного участка кривой s = s(d) к оси деформации (рис. 2). При испытании на растяжение цилиндрического или плоского образца одноосному (s1>0; (s2 = s3 = 0) напряжённому состоянию соответствует трёхосное деформированное состояние (приращение длины в направлении действия приложенных сил и уменьшение линейных размеров в двух других взаимно перпендикулярных направлениях): d1>0; d2 = d3 < 0. Соотношение между поперечной и продольной деформацией (коэффициент Пуассона)
в пределах упругости для основных конструкционных материалов колеблется в довольно узких пределах (0,27—0,3 для сталей, 0,3—0,33 для алюминиевых сплавов). Коэффициент Пуассона является одной из основных расчётных характеристик. Зная m и Е, можно расчётным путём определить и модуль сдвига
и модуль объёмной упругости
Для определения Е, G, и m пользуются тензометрами.
Сопротивление пластической деформации. При нагрузках Р > Рв наряду со всё возрастающей упругой деформацией появляется заметная необратимая, не исчезающая при разгрузке пластическая деформация. Напряжение, при котором остаточная относительная деформация (при растяжении — удлинение) достигает заданной величины (по ГОСТ — 0,2 %), называется условным пределом текучести и обозначается
Практически точность современных методов испытания такова, что sп и sе определяют с заданными допусками соответственно на отклонение от закона пропорциональности [увеличение ctg(90 — a) на 25—50 %] и на величину остаточной деформации (0,003—0,05 %) и говорят об условных пределах пропорциональности и упругости. Кривая растяжения конструкционных металлов может иметь максимум (точка в на рис. 2) или обрываться при достижении наибольшей нагрузки Рв’. Отношение
характеризует временное сопротивление (предел прочности) материала. При наличии максимума на кривой растяжения в области нагрузок, лежащих на кривой левее в, образец деформируется равномерно по всей расчётной длине l0, постепенно уменьшаясь в диаметре, но сохраняя начальную цилиндрическую или призматическую форму. При пластической деформации металлы упрочняются, поэтому, несмотря на уменьшение сечения образца, для дальнейшей деформации требуется прикладывать всё возрастающую нагрузку. sв, как и условные s0,2, sn и sе, характеризует сопротивление металлов пластической деформации. На участке диаграммы деформации правее в форма растягиваемого образца изменяется: наступает период сосредоточенной деформации, выражающейся в появлении "шейки". Уменьшение сечения в шейке "обгоняет" упрочнение металлов, что и обусловливает падение внешней нагрузки на участке Рв — Pk.
У многих конструкционных материалов сопротивление пластической деформации в упруго-пластической области при растяжении и сжатии практически одинаково. Для некоторых металлов и сплавов (например, магниевые сплавы, высокопрочные стали) характерны заметные различия по этой характеристике при растяжении и сжатии. Сопротивление пластической деформации особенно часто (при контроле качества продукции, стандартности режимов термической обработки и в др. случаях) оценивается по результатам испытаний на твёрдость путём вдавливания твёрдого наконечника в форме шарика (твёрдость по Бринеллю или Роквеллу), конуса (твёрдость по Роквеллу) или пирамиды (твёрдость по Виккерсу). Испытания на твёрдость не требуют нарушения целостности детали и потому являются самым массовым средством контроля механических свойств. Твёрдость по Бринеллю (HB) при вдавливании шарика диаметром D под нагрузкой Р характеризует среднее сжимающее напряжение, условно вычисляемое на единицу поверхности шарового отпечатка диаметром d:
Характеристики пластичности. Пластичность при растяжении конструкционных материалов оценивается удлинением
или сужением
при сжатии — укорочением
(где h0 и hk — начальная и конечная высота образца), при кручении — предельным углом закручивания рабочей части образца Q,рад или относительным сдвигом g = Qr (где r — радиус образца). Конечная ордината диаграммы деформации (точка k на рис. 2) характеризует сопротивление разрушению металла Sk, которое определяется
(Fk — фактическая площадь в месте разрыва).
Модуль
сдвига-величина,
характеризующая деформацию сдвига.
Модуль
сдвига равен отношению касательного
напряжения к величине угла сдвига.
В начальной
части диаграмма сдвига (на рисунке)
линейная, т.е. угол сдвига пропорционален
касательному напряжению .
Закон пропорциональности, называемый
законом Гука при сдвиге, может быть
записан:
где коэффициент пропорциональности G называется модулем сдвига сдвига или модулем упругости 2-го рода. Он характеризует сопротивление материала упругим деформациям и является его упругой постоянной.