
- •Министерство образования Российской Федерации
- •Подготовлено и издается по заказу института Инфо
- •Глава I. Информатизация общества.
- •1.2 Информатизация общества
- •1.3 Об информационной культуре
- •1.4 Информационный потенциал общества
- •1.5 Рынок информационных продуктов и услуг
- •1.6 Правовое регулирование на информационном рынке
- •1.7 Информатика — предмет и задачи
- •Глава II информация и ее свойства
- •2.1 Информация и данные
- •Н. Винер. Кибернетика
- •2.2. Классификация и кодирование информации
- •2.3 Система кодирования
- •2.4 Кодирование данных двоичным кодом
- •Кодирование текстовых данных
- •Основные структуры данных
- •27 Сорокин Сергей Семенович
- •Иерархические структуры данных
- •Упорядочение структур данных
- •Глава III. Файловая системы.
- •3.1. Файлы и файловая структура
- •Единицы измерения данных
- •Единицы хранения данных
- •3.2. Организация файловой системы
- •3.3. Обслуживание файловой структуры
- •Создание и именование файлов
- •3.4 Создание каталогов (папок)
- •Копирование и перемещение файлов
- •Глава IV информационно-логические основы построения компьютеров
- •4.1 Логические основы построения пк
- •4.2 Программное управление эвм
- •4.3. Последовательные модели вычислителей (машины Тьюринга)
- •4.4. Параллельные модели вычислителей (однородные структуры)
- •Глава V компьютерные сети
- •5.1. Компьютерные сети
- •Сетевые службы.
- •5.3. Интернет. Основные понятия
- •5.4 Подключение к Интернету Основные понятия
- •Установка модема
- •Глава VI базы данных
- •6.1. Основные понятия баз данных
- •Структура простейшей базы данных
- •Свойства полей базы данных
- •Типы данных
- •6.2 Безопасность баз данных
- •6.3. Проектирование баз данных
- •Глава VII сжатие данных
- •7.1. Теоретические основы сжатия данных
- •7.2 Алгоритмы обратимых методов сжатия
- •Синтетические алгоритмы
- •7.3. Программные средства сжатия данных
- •Глава VIII компьютерная безопасность
- •8.1 Понятие компьютерной безопасности
- •Компьютерные вирусы
- •8.2 Методы защиты от компьютерных вирусов
- •Средства антивирусной защиты
- •8.3 Защита информации в Интернете
- •8.4 Понятие о несимметричном шифровании информации
- •Принцип достаточности защиты
- •Глава IX программирование для эвм
- •9.1. Языки программирования
- •9.2 Обзор языков программирования высокого уровня
- •9.3 Системы программирования
- •9.4 Архитектура программных систем
- •9.5 Структурное программирование
- •Глава X. Объединение нескольких компьютеров
- •10.1 Топология физических связей
- •10.2 Организация совместного использования линий связи
- •10.3 Адресация компьютеров
- •10.4 Ethernet — пример стандартного построения сетей
Глава III. Файловая системы.
3.1. Файлы и файловая структура
Единицы представления данных
Существует множество систем представления данных. С одной из них, принятой в информатике и вычислительной технике, двоичным/кодом, мы познакомились выше. Наименьшей единицей такого представления является бит (двоичный разряд).
Совокупность двоичных разрядов, выражающих числовые или иные данные, образует некий битовый рисунок. Практика показывает, что с битовым представлением удобнее работать, если этот рисунок имеет регулярную форму. В настоящее время в качестве таких форм используются группы из восьми битов, которые называются байтами.
Таблица 2.2
Десятичное число |
Двоичное число |
Байт |
1 |
1 |
0000 0001 |
2 |
10 |
0000 0010 |
… |
… |
… |
255 |
11111111 |
1111 1111 |
Понятие о байте, как группе взаимосвязанных битов, появилось вместе с первыми образцами электронной вычислительной техники. Долгое время оно было машинно-зависимым, то есть для разных вычислительных машин длина байта была разной. Только в конце 60-х годов понятие байта стало универсальным машиннонезависимым.
Выше мы видели, что во многих случаях целесообразно использовать не восьмиразрядное кодирование, а 16-разрядное, 24-разрядное, 32-разрядное и более. Группа из 16 взаимосвязанных бит (двух взаимосвязанных байтов) в информатике называется словом. Соответственно, группы из четырех взаимосвязанных байтов (32 разряда) называются удвоенным словом, а группы из восьми байтов (64 разряда) — учетверенным словом. Пока, на сегодняшний день, такой системы обозначения достаточно.
Единицы измерения данных
Существует много различных систем и единиц измерения данных. Каждая научная дисциплина и каждая область человеческой деятельности может использовать свои, наиболее удобные или традиционно устоявшиеся единицы. В информатике для измерения данных используют тот факт, что разные типы данных имеют универсальное двоичное представление, и потому вводят свои единицы данных, основанные на нем.
Наименьшей единицей измерения является байт. Поскольку одним байтом, как правило, кодируется один символ текстовой информации, то для текстовых документов размер в байтах соответствует лексическому объему в символах (пока исключение представляет рассмотренная выше универсальная кодировка UNICODE).
Более крупная единица измерения — килобайт (Кбайт). Условно можно считать, что 1 Кбайт примерно равен 1000 байт. Условность связана с тем, что для вычислительной техники, работающей с двоичными числами, более удобно представление чисел в виде степени двойки, и потому на самом деле 1 Кбайт равен 210 байт (1024 байт). Однако всюду, где это не принципиально, с инженерной погрешностью (до 3 %) «забывают» о «лишних» байтах.
В килобайтах измеряют сравнительно небольшие объемы данных. Условно можно считать, что одна страница неформатированного машинописного текста составляет около 2 Кбайт.
Более крупные единицы измерения данных образуются добавлением префиксов мега-, гига-, тера-; в более крупных единицах пока нет практической надобности.
1 Мбайт = 1024 Кбайт = 1020 байт 1 Гбайт =1024 Мбайт = 1030 байт 1 Тбайт = 1024 Гбайт = 1040 байт
Особо обратим внимание на то, что при переходе к более крупным единицам «инженерная» погрешность, связанная с округлением, накапливается и становится недопустимой, поэтому на старших единицах измерения округление производится реже.