- •Лекция № 7 Доцент Ильич г.К. ( кафедра мед. И биол. Физики ) механические колебания и волны
- •1. Гармонические колебания
- •1.1. Дифференциальное уравнение гармонических колебаний и его решение
- •1.2. Энергия гармонического колебания
- •2. Затухающие колебания
- •2.1. Дифференциальное уравнение затухающих колебаний и его решение
- •2.2. Декремент затухания и логарифмический декремент затухания.
- •3. Вынужденные колебания
- •3.1. Дифференциальное уравнение вынужденных колебаний и его решение
- •4. Сложение гармонических колебаний
- •4.1. Колебания проходят вдоль одной прямой с одинаковыми частотами
- •4.2. Колебания происходят вдоль одной прямой с разными частотами
- •5. Разложение колебаний в ряд Фурье. Гармонический спектр сложных колебаний
- •6. Принципы использования гармонического анализа для обработки диагностических данных
- •7. Механические волны
- •7.1. Уравнение волны
- •7.2.Энергия волны, поток энергии волны, интенсивность. Вектор Умова
- •8. Эффект Доплера
- •9. Принципы использования эффекта Доплера для определения скорости движения крови
- •Контрольное задание
4.2. Колебания происходят вдоль одной прямой с разными частотами
Представим два складываемых колебания графически (см.рис 4).

5. Разложение колебаний в ряд Фурье. Гармонический спектр сложных колебаний
Рассмотрение рис.4 приводит к утверждению, обратному сказанному выше и известному как теорема Фурье: любое сложное периодическое движение x(t) = x(t +T) c периодом Т можно представить в виде суммы простых составляющих гармонических колебаний (гармоник). Частоты этих гармоник кратны основной частоте рассматриваемого периодического процесса.
Первая гармоника имеет частоту = 2 /Т , вторая - 2 , третья - 3 и т.д.
Это утверждение можно записать в виде формулы, представляющей ряд Фурье:
(22)
Здесь Ак - амплитуды складываемых гармоник, а к - их начальные фазы. Первая гармоника, имеющая частоту , обладает амплитудой А1 , и начальной фазой 1 , вторая (с частотой 2 ) имеет амплитуду А2 и начальную фазу 2 и т.д.

В записанной для общего случая формуле (22) число гармоник, входящих в состав сложного колебания , представляется бесконечно большим. При рассмотрении реальных колебательных процессов следует учесть, что вклад отдельных гармонических составляющих в анализируемое сложное колебание различен - в формулу (22) отдельные гармоники входят с разными амплитудами.
График, на котором по оси абсцисс отложены частоты гармоник, а по оси ординат - соответствующие им амплитуды, представляет собой гармонический спектр сложного колебания (см. рис.6).

Из рассмотрения рис. 6 можно сделать вывод, что гармоники, частота которых превышает 10 , имеют малую амплитуды и, следовательно, их вклад в колебание, гармонический спектр которого представлен на рисунке, незначителен. Поэтому ряд Фурье для этого случая можно считать состоит из 10 слагаемых ( к = 1,2,3,.....,10 ), а вся информация о сложном колебательном процессе заключена в полосе частот от 1 (основная частота процесса) до 10 .
6. Принципы использования гармонического анализа для обработки диагностических данных
Многочисленные процессы, обуславливающие жизнедеятельность организма, носят периодический характер (сердечные сокращения, дыхание, кровенаполнение сосудов и т.д.). Диагностические данные, позволяющие судить о работе ряда органов и функциональных систем организма, представляется в виде периодических кривых. Например, электрокардиограмма (ЭКГ) представляет собой зафиксированную на бумажной ленте или на экране монитора сложную периодическую зависимость от времени t биопотенциалов ,

сопровождающих работу сердца ( см. рис.7). Механизмы генерации этих потенциалов и их распространения будут рассмотрены в других разделах курса. Здесь отметим только, что обработка данных ЭКГ может быть произведена с помощью гармонического анализа. С помощью специальных приборов - анализаторов получают гармонический спектр ЭКГ. Частота первой гармоники в этом спектре соответствует частоте сердечных сокращений у пациента. Она составляет около 1 Гц (период Т порядка 1с). Из вида реально полученных спектров следует, что гармоники ЭКГ с частотами свыше 150-400 Гц имеют пренебрежимо малую амплитуду и для анализа ЭКГ ряд Фурье (формула (22)) можно ограничить (с запасом) последней составляющей с частотой 400 Гц. Это означает, что информация об электрической деятельности сердца заключена в частотном диапазоне от 0,5 Гц ( минимально возможная частота сердечных сокращений) до 400 Гц (частота гармоники самого высокого порядка).
Полученный результат предъявляет необходимые требования к аппаратуре регистрации ЭКГ: она должна обеспечивать одинаковым образом съем, усиление и отображение электрических сигналов в указанном частотном диапазоне. Так, с одним и тем же коэффициентом усиления должны усиливаться составляющие ЭКГ-сигнала на всех частотах, представленных в его гармоническом спектре; регистрирующие устройства должны обладать одинаковой чувствительностью для этих составляющих. Только при этом условии зарегистрированная ЭКГ в точности повторяет реальную зависимость биопотенциалов, вызванных работой сердца, от времени.
Применение гармонического анализа для обработки данных о периодических физиологических процессах позволяет с помощью электронной и вычислительной техники автоматизировать диагностику заболеваний и существенно расширить ее возможности.
