
- •Ионно-обменные реакции между ионами в растворах электролитов
- •Примеры реакций, идущих необратимо
- •1. Образование осадка
- •2. Образование газообразного вещества
- •3. Образование слабого электролита
- •Амфотерные гидроксиды
- •Произведение растворимости
- •Примеры решения типовых задач
- •Гидролиз
- •Окислительно-восстановительные реакции
- •Важнейшие окислители и восстановители
- •Составление окислительно-восстановительных реакций
- •Влияние реакции среды на направление окислительно-восстановительных реакций
- •Определение эквивалентной массы в окислительно-восстановительных реакциях
- •Пример решения типовой задачи
- •Электролиз
- •Типовые примеры электролиза веществ
- •Закон электролиза
- •Примеры решения типовых задач
- •Содержание дисциплины «Общая химия»
- •Библиографический список
- •Теоретические вопросы, упражнения, задачи для подготовки к контрольной работе. Индивидуальные домашние задания
- •I.Теоретические вопросы
- •II.Упражнения
- •III. Задачи
- •Типовой билет проверочной контрольной работы
- •«Ионно-обменные реакции. Гидролиз солей»
- •«Ионно-обменные реакции. Гидролиз солей»
- •Теоретические вопросы, упражнения, задачи для подготовки к контрольной работе. Индивидуальные домашние задания
- •I.Теоретические вопросы
- •II.Упражнения
- •III. Задачи
- •Типовой билет проверочной контрольной работы
- •Библиографический список
- •«Ионно-обменные реакции. Гидролиз солей»
Влияние реакции среды на направление окислительно-восстановительных реакций
Реакция среды играет
существенную роль в направлении
протекания окислительно-восстановительных
реакций. Это можно показать на примере
окисления сульфита натрия перманганатом
калия в кислой, нейтральной и щелочной
среде. Во всех случаях сульфит окисляется
до сульфата. Перманганат калия
восстанавливается в различной степени
в зависимости от реакции среды: в кислой
среде – до
,
в нейтральной – до
,
а в сильнощелочной среде – до
.
5Na2O3
+ 2K
O4
+ 3H2SO4
=
=
5Na2O4
+2
SO4
+K2SO4
+3H2O;
- 2ē =
5
+ 5ē =
2
3Na2O3
+ 2K
O4
+ 3H2O = 3Na2
O4
+ 2
O2
+ 2KOH;
- 2ē =
3
+ 3ē =
2
Na2O3
+ 2K
O4
+ 2KOH = Na2
O4
+ 2K2
O4
+ H2O;
- 2ē =
1
+ 1ē =
2
Определение эквивалентной массы в окислительно-восстановительных реакциях
Эквивалентная масса (Э) - масса одного моль-эквивалента - окислителя или восстановителя определяется делением молярной массы окислителя или восстановителя на число принятых или отданных электронов соответственно. Эквивалентная масса перманганата калия будет различной в зависимости от реакции среды: M(KMnO4) = 158 г/моль,
в кислой среде:
г/моль-экв;
в нейтральной среде:
г/моль-экв;
в сильнощелочной среде:
г/моль-экв.
Пример решения типовой задачи
Задача. Сколько литров сероводорода, измеренных при нормальных условиях, можно окислить 500 мл 0,2 н раствора дихромата калия в кислой среде?
Необходимо написать уравнение реакции и, составив электронный баланс, расставить коэффициенты в уравнении реакции:
3H2S + K2Cr2O7 + 4H2SO4 = 3S +Cr2(SO4)3 + K2SO4 + 7H2O;
-
2ē =
6 3
2
+ 6ē = 2
2 1
Чтобы коэффициенты в уравнении реакции были наименьшими, необходимо коэффициенты, стоящие перед восстановителем и окислителем, уменьшить в два раза. Однако соотношение между ними должно оставаться прежним.
Определяем массу
дихромата калия, содержащуюся в 500 мл
0,2 н раствора, исходя из определения
нормальности: , отсюда
m =
·Э·V.
Необходимая для этого расчета эквивалентная масса определяется, как указывалось ранее, делением молярной массы дихромата калия, равной 294 г/моль, на число принятых этой молекулой электронов:
г/моль-экв.
Масса K2Cr2O7 будет равна
m(K2Cr2O7) = Cн·Э (K2Cr2O7)·V = 0,2·49·0,5 = 4,9 г.
Из уравнения реакции следует:
3 моля H2S реагируют с 1 моль K2Cr2O7,
3 · 22,4 л H2S реагируют с 294 г K2Cr2O7,
V(H2S) л H2S реагирует с 4,9 г K2Cr2O7.
л.
Ответ: можно окислить 1,12 л сероводорода.
Электролиз
Электролиз – это окислительно-восстановительная реакция, протекающая при прохождении постоянного электрического тока через раствор или расплав электролита.
Если в водный раствор электролита или его расплав опустить электроды, соединенные с источником постоянного тока, то хаотичное движение ионов становится направленным: катионы двигаются к катоду (отрицательно заряженному электроду), а анионы – к аноду (положительно заряженному электроду).
С катода электроны переходят к положительно заряженным ионам, в результате чего они превращаются в нейтральные атомы, следовательно, на катоде происходит процесс восстановления. Катод является самым сильным восстановителем.
Отрицательно заряженные ионы отдают электроны аноду и также разряжаются. На аноде происходит процесс окисления.
При пропускании электрического тока через водные растворы солей металлов, имеющих стандартный электродный потенциал больше –0,41 В (потенциал водорода при [H+] = 10-7 моль/л), на катоде восстанавливаются ионы металлов:
Men+ + 2ē = Me.
Если же стандартный электродный потенциал металла меньше –0,41 В, то происходит восстановление молекул воды:
2H2O + 2ē = H2↑ + 2OH-.
В реальных условиях молекулы воды восстанавливаются только при электролизе водных растворов солей очень активных
металлов, расположенных в ряду стандартных электродных потенциалов до алюминия включительно.
Если же водный раствор содержит катионы различных металлов, то при электролизе их выделение на катоде протекает в порядке уменьшения алгебраической величины стандартного электродного потенциала, т. е. сначала восстанавливаются Au3+, затем Ag+, Cu2+ и Fe2+..
В кислой среде на катоде восстанавливаются ионы водорода
2H+ + 2ē = H2↑
На аноде происходит окисление анионов или молекул воды. Легче всего окисляются анионы бескислородных кислот (S2-, J-, Br-, Cl-):
2Cl- - 2ē = Cl2.
Если раствор
содержит анионы кислородных кислот
(SO,
N
C
P
),
то на аноде окисляются не эти ионы, а
молекулы воды с выделением кислорода:
2H2O – 4ē = O2↑ + 4H+.
В щелочной среде происходит окисление гидроксид-иона с образованием кислорода
4ОН- - 4ē = О2↑ + 2Н2О.
Такие процессы протекают, если электролиз происходит на нерастворимых электродах, т. е. на таких, материал которых не принимает участия в электролизе. Нерастворимые электроды изготавливают из золота, платины или графита.
В случае растворимого анода происходит окисление самого анода. Образовавшиеся ионы металла переходят в раствор и восстанавливаются на катоде, т. е. происходит перенос металла с анода на катод.