
- •4. Модели задач планирования и управления горным производством
- •4.1. Задачи о расстановке оборудования
- •4.2. Задачи об оптимальном использовании ресурсов (оптимальном плане выпуска продукции)
- •4.3. Планирование добычных работ в режиме усреднения качества
- •4.4. Планирование перевозок грузов горных предприятий
- •4.5. Модель задачи планирования работы группы горных предприятий (добывающих и перерабатывающих)
- •4.6. Модели задач размещения
- •4.7. Моделирование организации очистных работ на шахтах
- •4.8. Модель оперативного планирования распределения самоходного оборудования по очистным блокам рудника
- •4.9. Статическая задача распределения ресурсов
- •4.10. Динамическая задача распределения ресурсов
- •4.11. Задачи моделирования процессов и классификация способов взаимодействия машин и механизмов
- •4.12. Моделирование непосредственного взаимодействия машин и механизмов
4.6. Модели задач размещения
Задачи размещения заключаются в определении мест строительства и мощности предприятий. Приведем простейший пример задачи размещения.
Имеется несколько месторождений полезного ископаемого. Затраты на добычу на каждом месторождении известны. Известны затраты на транспорт от каждого месторождения к потребителям продукции. Необходимо определить мощность предприятия на каждом месторождении. Если на некоторых месторождениях имеются действующие предприятия, по ним следует определить, насколько нужно уменьшить или увеличить мощность.
Введем следующие условные обозначения:
i - месторождение полезного ископаемого (i = 1, 2, ..., n);
ci - затраты на добычу на i-м месторождении;
-
максимально возможная добыча с i-гo
месторождения;
-
минимальная
добыча с i-гo
месторождения (для эксплуатируемых
месторождений);
j - потребитель продукции (j - 1, 2, ..., т);
Qj - потребность j-гo потребителя;
cij - затраты на транспорт с i-гo месторождения к j-му потребителю;
dij - провозная способность транспортных коммуникаций с i-гo месторождения к j-му потребителю.
Задача заключается в определении мощности предприятия на каждом месторождении и объемов перевозок с каждого месторождения к потребителю.
За управляемые переменные задачи примем:
xij - объем продукции, перевозимой с i-гo месторождения к j-му потребителю;
yi - мощность предприятия на i-м месторождении
(60)
Критерий оптимальности - затраты на добычу и транспорт полезного ископаемого
(61)
Задачу следует решать при следующих ограничениях:
а) по мощности добывающих предприятий
(62)
б) по обеспечению потребителей
(63)
В
самом простом случае, т.e.
когда затраты постоянны и не зависят
от мощности предприятия (что является
обычно грубым допущением),
задача линейна и может быть сведена к
чисто транспортной
объединением затрат на добычу и транспорт.
Для этого следует
ввести новые стоимостные показатели
4.7. Моделирование организации очистных работ на шахтах
Совершенствование организации работ в очистных забоях угольных шахт ведет к увеличению производительности труда, сокращению простоев техники, снижению себестоимости угля. В условиях комплексно-механизированных лав разработка технологических графиков организации процессов в лаве включает комплексное обоснование оптимальной численности бригады, расстановку рабочих по процессам в течение смены, обоснование продолжительности рабочего цикла и рациональной плановой нагрузки на лаву. Исследования показали, что максимальное совмещение технологических процессов и вызванное этим увеличение общей численности бригады, хотя и ведет к росту добычи угля, но вызывает также неоправданные простои рабочих из-за их неравномерного использования в течение смены. Поэтому часто оказывается более выгодным несколько рассредоточить процессы во времени, добиваясь этим более равномерного использования рабочих и сокращения общей численности бригады.
Обозначим через k = 1, 2, . . ., n операционные состояния лавы, длительность которых составляет tk. Общая длительность производственного цикла в лаве Тц включает n последовательных отрезков времени t1, t2, …, tk, …, tn, в течение которых комбайн работает или простаивает (по организационным или технологическим причинам). В составе работ производственного цикла выделяются отдельные процессы i = 1, 2, .. ., m, при этом объем работ по каждому процессу на цикл составляет Wi, а производительность одного рабочего по данному процессу в единицу времени (например, минуту) чистой работы на данном процессе vi. Для сопоставления затрат времени по всем процессам объем работ Wt удобно выражать в метрах длины очистного забоя.
Общая длительность производственного цикла в лаве Tц (мин) составляет
(64)
где l - дополнительные периоды времени, необходимые для ликвидации отставания отдельных процессов из-за их сложной технологической взаимозависимости. При этом на время tl приостанавливается выемка угля комбайном.
Кроме tk, tl и Тц управляемыми переменными в задаче являются общая численность бригады Z и число рабочих xik, занятых Ha i-м процессе в k-м операционном периоде цикла. При этом допускается перевод рабочих с выполнения одного процесса на другой, т.e. величины xik для разных периодов времени протекания процесса могут меняться. При определении численности бригады следует иметь в виду, что в периоды l, когда ликвидируется отставание i-гo процесса, на его выполнение переводится вся бригада численностью Z за исключением необходимого звена рабочих bi, которые должны оставаться при комбайне.
За критерий оптимальности при обосновании оптимальной организации очистных работ в лаве могут быть приняты минимальные трудовые или стоимостные затраты на 1 т добываемого из лавы угля. Более простым является критерий трудовых затрат. Тогда задача формулируется следующим образом:
(65)
где Tраб - длительность рабочего времени в сутки, мин; dц - добыча угля за один цикл, т; r - число рабочих смен в сутках; N - постоянный штат рабочих в лаве и в смежных технологических звеньях, чел.-смены.
Задачу необходимо решать при соблюдении следующих ограничений:
а) по выполнению объемов работ по процессам
(66)
б) по выполнению плана добычи угля из лавы
(67)
где - dпл плановая (нормативная) нагрузка на лаву, т;
в) по максимально возможной численности отдельных звеньев
(68)
где
и
- максимально и минимально допустимое
число
рабочих, занятых на i-м
процессе, определяемые из условий
возможного
размещения рабочих на ограниченном
фронте работ и
из соображений безопасности;
г) по численности бригады
(69)
где ak - численность комбайнового звена в каждом операционном периоде, определяемая по нормам в зависимости от скорости движения комбайна в операционный период tk. Разность между правой и левой частью данного ограничения показывает число рабочих, простаивающих в k-м периоде из-за отсутствия фронта работ;
д) по технологической взаимосвязи отдельных рабочих процессов в лаве
(70)
где
допустимое опережение между процессами
g
и
h
по
длине фронта
лавы.
Такие
ограничения строятся для каждой
взаимосвязанной пары процессов
i=g
и
i=h,
для
обеспечения требования, чтобы в любой
момент времени k
процесс
g
опережал
по длине фронта лавы процесс
h
не
менее чем на
м;
е) по целочисленности переменных и положительности решения
-
целое, Z
- целое,
0, Z
>0.
(71)
Требование
целочисленности
может и отсутствовать, в этом случае
один рабочий на i-м
процессе может быть занят не весь k-й
период.
Особенностью
данной задачи является взаимозависимость
управляемых
переменных
,
Z,
Tц
,
tk
и
tl,
из-за
чего модель является нелинейной.